
DEIM2020 B4-3

Purchase Prediction based on Recurrent Neural Networks

with an Emphasis on Recent User Activities

Quanyu PIAO†, Joo-Young LEE††, and Tetsuya SAKAI†

† Faculty of Science and Engineering, Waseda University

3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555, Japan

†† Wider Planet, Inc.

KFAS Building 8F, 211, Teheran-ro, Gangnam-Gu, Seoul, Korea

E-mail: †quanyu.piao@ruri.waseda.jp, ††jooyoung@widerplanet.com, †††tetsuyasakai@acm.org

Abstract Existing purchase prediction models for E-commerce are often limited in accuracy when they overly

concentrate on specific user activities. Hence, we propose three methods of aggregating user activities in over a time

sequence in such a way that recent activities are emphasized compared to old ones. The compression of the original

data and reduction of training time is significant, and the result shows that the models trained by the Fibonacci

Aggregation give the best comprehensive performance of the three aggregating methods.

Key words Recommendation System, Sequential Data, Machine Learning, Recurrent Neural Networks

1 INTRODUCTION

Advertisement recommendation is an important part in

the E-Commerce field. The quality of the recommendation

will highly affect user behaviors. Whether the user will

click and buy will give a tremendous impact on profits of

the advertisers. The user behaviors include time informa-

tion (timestamp), commodity information (item ID, cate-

gory, etc.), event (click, buy, etc.). The user behaviors have

the following characteristics: Sequentiality, Uncertainty, and

Multidimensionality, that lead to challenges for the user be-

havior prediction task and corresponding recommendations.

Sequentiality The events given by the users are strictly se-

quential so that the prediction models should pay more

attention to the time information.

Uncertainty The user behaviors are complex and change-

able. Short and simple click may lead to a buy action;

however, it is also possible for a user buying nothing

after a long time session with many clicks.

Multidimensionality There are a huge number of com-

modities in the world with diverse categories. Also, users

may have different behaviors at different times such as

promotion time.

There are many models using classic machine learning

methods such as Random Forest [1] and Gradient Boosting

Decision Tree (GBDT) [2] to predict the user behavior. Re-

cently, some simple prediction models such as Factorization

Machine (FM) [3] [4] series are also widely used. However,

because of the complexity of the user behavior data men-

tioned, all of these methods need careful data analysis and

feature engineering before the model training.

Neural Network (NN) models have developed rapidly in

recent years. They can discriminate and select the features

automatically to prevent from complicated feature engineer-

ing, and finally provide good prediction and recommenda-

tion results [5]. Especially, the Recurrent Neural Networks

(RNN) have great adaptability for sequential data. We be-

lieve that the RNN will also perform well in this task for user

behaviors that are strictly sequential.

The present study is based on RNN to predict the buy

action intention of the users and explores the prediction per-

formance in the case where the models are trained by the

aggregated data.

2 RELATED WORK

In the RecSys 2015 challenge [6], Wu, et al. [5] proposed an

RNN model to predict the buy session by simply using the

time-stamp of the clickstream data to analyze the item and

session features. Also, Sheil, et al. [7] predicted purchasing

intent by considering the item price variance and doing skip

connections to combine the original input with every RNN

layers. Besides, Gligorijevic, et al. proposed a time-aware

approach [8] to model user behavior which can capture im-

plicit signals of users’ conversion intents.



3 METHODOLOGY

3.1 Data Aggregation

The proposed approach focuses on data preprocessing.

Our starting point is analogous to the way people think

and remember when browsing products in online shopping.

Actually, people do not remember exactly when and what

items they browsed or bought but only have a rough im-

pression. For example, a user may only remember that he

browed spoons, chopsticks, and bows yesterday morning, and

especially a stainless steel spoon impressed him a lot. In

this example, the time information is no longer as accurate

as the data record we have, and the correspondence rela-

tionship between time and items has been blurred. Also,

the information about the products the users browsed is not

completely remembered. The farther the behavior is, the

less information the users remember. Based on this view,

we propose a data aggregation process that aggregating as-

cending numbers of activities to one activity in the data pre-

processing. Firstly, the user behavior records are too huge

to handle. The aggregation of the original data can summa-

rize and compress the data. Secondly, predicting behaviors

for users who have short activity records is a challenge. As

user records have quite different lengths, after the aggrega-

tion, the overall record length will be significantly reduced.

Hence, not only the users with a small number of activities

we can focus, but also can consider the long-activity users.

A session is full of click records by a user, and each record

including this session’s ID (SSID), clicked timestamp, item

and its category. We apply our aggregating methods to ev-

ery session. The aggregating methods are detailed as follows.

We propose three aggregating methods: Natural Aggrega-

tion, Fibonacci Aggregation, and Exponent Aggregation.

3.1.1 Aggregation definitions

Firstly, we define the number of activities we aggregated

within one session in every step Pi as:

Pi, i = 1, 2, 3, . . .

Then, the total numbers of activities aggregated

Naggregated can be represented as:

N aggregated =

max(i)∑
i=1

P i, i = 1, 2, 3, . . .

Obviously, Naggregated should be smaller than the longest

session in the dataset:

N aggregated ⩽ maxLength(session)

For Natural Aggregation showed in Figure 1, we aggregate

numbers of activities in natural number sequence, so Pi will

be:

Pi = i, i = 1, 2, 3, . . .

In Fibonacci Aggregation, the Fibonacci number sequence

can be represented as:

F (i) = F (i− 1) + F (i− 2), i = 1, 2, 3, . . .

So, the number of processed activities in every step will

be:

Pi =

1, i = 1 and 2

F (i), i = 3, 4, 5, . . .

Similarly, in the Exponent Aggregation, we choose the base

as 2, therefore the Pi will be:

P i = 2 i−1, i = 1, 2, 3, . . .

Time, Item, Category 

… 

… 

… 

… 

… 

… 

… 

… 

… 

Time, Item, Category 

Time, Item, Category 

Time, Item, Category 

Time, Item, Category 

Time, Item, Category 

Time, Item, Category 

Time, Item, Category 

Time, Item, Category 

Time, Item, Category 

Time, Item, Category 

Time, Item, Category 

Time, Item, Category 

Tim

Tim

Tim

TimTim

Tim

Tim

Tim

Tim

Tim

TimTimTim

Tim

TimTim

Tim

Tim

Time, Item, Category 
= 2 

= 5 

= 4 

= 3 

= 2 

= 1 

Figure 1: Natural Aggregation

3.1.2 Aggregation method in every step

The features in the records may include timestamp, item

ID and item category. In every aggregating step, for those

numerical features, like timestamp, we get the average of the

features:

feature new = avg(
∑

feature original)

For those non-numerical features, like item ID and cate-

gory, we choose the most clicked feature in this aggregating

step. Note that if some features are correlative, the new fea-

tures should also be correlative. For example, a most clicked

item and its category should be:

feature newItem = mostClicked(feature clickedItemList)

feature newCategory = Category(feature newItem)



3.2 Embedding

Since the advent of Word2Vec [9], embedding has been a

common technology in Machine Learning. It can map the

high dimensional sparse vectors, like one-hot representation,

to low-dimensional dense vectors. Embedding plays a vital

role not only in Natural Language Processing (NLP) tasks,

but also entity representation [10] in Knowledge Base tasks.

We embed time information, item IDs, and tem categories

in the user behavior records to solve a Recommendation Sys-

tem prediction task.

3.3 Long Short-Term Memory (LSTM)

Recurrent Neural Networks (RNN) have a node structure

that can be cycled so that it can handle the sequential input.

And there are inverted sentences in some situations. The Bi-

directional RNN (Bi-RNN) models can consider the context

in order and reverse to catch more accurate meanings of the

sentences.

However, original RNN is susceptible to the problem of

gradient disappearance or explosion, which will stop the

training or let the network unable to convergence, due to the

simple cell structure. The emergence of Long Short-Term

Memory (LSTM) attempts to alleviate this problem.

We utilize an LSTM in our models. As for the Bi-LSTM,

we believe that the bi-directional model can get more user ac-

tion information from E-Commerce clickstream data to per-

form better.

4 EXPERIMENTS

4.1 Dataset

The RecSys 2015 Challenge dataset [6] published by YOO-

CHOOSE provides user clickstream data for training and

testing our prediction models. It consists of 9.2 million

user sessions. The sessions are anonymous and consist of

a chronological sequence of events describing user behav-

iors. There are two kinds of user actions in the RecSys 2015

dataset: click and purchase. The click data including session

ID, timestamp, the item user clicked and the item’s category,

while the buy data including the session ID and timestamp,

the purchased item ID and its price and quantity.

Table 1: RecSys 2015 dataset overview

Total

clicks

Click

sessions

Buy

sessions

Unique

Item

Unique

Category

33,003,944 9,249,729 509,696 52,739 339

Table 2: RecSys 2015 dataset click action sample

SSID Timestamp Item ID Category

1 2014-04-07T10:51:09.277Z 214536502 0

1 2014-04-07T10:54:09.868Z 214536500 0

Table 3: RecSys 2015 dataset buy action sample

(Timestamp column omitted)

SSID Item ID Price Quantity

420374 214537888 0 1

420374 214537850 0 1

4.2 Data Preparation

We use the whole RecSys 2015 dataset. As most sessions

consist of less than 50 activities, we choose the activities

which length are shorter or equal to a suitable value in each

aggregating method (Table 4). We applied padding to ses-

sions that are shorter than the value. However, the imbal-

ance between buy and the not-buy session is still an unavoid-

able problem: only 5% of sessions ending with one or more

buy actions. This makes the purchase prediction, which is a

positive sample, quite hard to implement directly. Thus, we

sampled nearly the same number of buy data from the click

data to get a balanced training dataset.

Table 4: Activity length limit and shrunken percent-

age in each aggregating method

Aggregation
Activity

Length Limit

Shrunken

Percentage

Natural 36 99.60%

Fibonacci 33 99.46%

Exponent 31 99.35%

Our task is to predict whether the user will give a pur-

chase action or not. We process each property of click and

buy data as follows:

• Click data: All properties are unchanged.

• Buy data: Only session ID, timestamp and item ID are

retained.

• Session ID is discarded in the training and prediction (of

course we retain this during session grouping by the ID).

• Timestamps are split into month, day, day of week, hour,

minute, and second. All sessions happened in 2014, so

we discard the year property. And we believe that the

minute and second features are not critical to the pre-

diction so that we discard them when we are using the

data.

• Category IDs are unchanged.

• Target data: For every session in click data, if the ses-

sion ID exists in the buy data, this means the session is

a buy session. We assign number 1 to show that this is

a buy session. Otherwise, set number 0 to show that the

session not ended with a buy action.



Finally, we group the session into one row, including ses-

sion ID, session features, and session buy. There are month,

day, day of week, hour, minute, second, item ID, and item

category in the session feature column. The item ID and

item category field are recorded as two lookup tables and

converted to indexes. Table 5 shows the sample after the

basic feature engineering. Then 6 features (except minute

and second features) are embedded into dense vectors.

Table 5: Feature data sample

SSID Feature is buy

7 4:2:3:6:38:53:389:0|4:2:3:6:39:5:847:0 0

367 4:7:1:9:42:12:566:0|4:7:1:9:43:14:566:0 1

4.3 Activity Aggregation

For the time data including month, day, day of week, hour,

minute, and second, firstly we convert to seconds from the

year 1970, then we calculate the average time in an aggre-

gation step as the new timestamp, then restore to the time

features. As for the item ID and category, we choose the

most clicked item and its category in this aggregating step.

There may remain activities after the aggregation. These

remaining activities will be processed in the same way men-

tioned above. Table 4 shows the change of the dataset after

activity aggregation.

4.4 Model

In this work, we construct an LSTM model to handle the

sequential data. We prepared two LSTM models which are

simple and complex. Then every model applied with Bi-

directional feature and set dropout rate as 0.5 during train-

ing. All structures of the LSTM models as follows:

Table 6: LSTM Model Structures

Hidden size Hidden layer

Simple 32 1

Complex 128 3

The last output of the LSTM will be full connected [9] to

the final output layer, which is a neuron that provides the

probability of a buy session. We use a sigmoid cell to map

the output to [0, 1] space and set a threshold as 0.5, which

means the outputs bigger than 0.5 will be predicted as a buy

session. Figure 2 shows the overview of the model structure.

4.5 Experiment Results

For the buy prediction task in E-Commerce, we evaluate

the predictions by measuring buy and not-buy session’s pre-

cision, recall, and the ROC AUC score.

Table 7 shows the approximate value of data compress rate

and training time reduction rate. Firstly, we can greatly

L 

S 

T 

M 

Sigmoid 

month: 4 

day: 5 

day of week: 3 

hour: 5 

item: 128 

category: 32 

Embedding Output Prediction 0.5 

Figure 2: Model structure with feature embedding

widths

compress the original data to aggregated data to save space

usage. Then, using aggregated data can reduce the training

time, especially for complex neural networks.

Table 8 and Table 9, which are the results from the bal-

anced and original dataset, have a similar shape. Except

the results of Fibonacci Aggregation, in each table, the sim-

ple LSTM models trained by aggregated data have better

performance in not-buy precision and buy recall, but worse

performance in buy precision and not-buy recall than the

model trained by the unaggregated data. We consider that

the simple models trained by the natural and exponent ag-

gregated data have more tendency to predict user buy action

so that causing the better buy recall result. In the meantime,

they lose not-buy recall performance and get a little better

result in not-buy precision.

However, for the complex models, the results are com-

pletely opposite to the simple models’ results. We believe

that the models gain more ability to predict not-buy action,

which causes the results: better performance in not-buy re-

call and buy precision, worse performance in not-buy preci-

sion and buy recall.

Finally, let’s concentrate on the results of the models

trained by the Fibonacci aggregated data. Compared with

the other two aggregation methods, the changes are more sta-

ble, or, the shape of the results are similar with the models

trained by the unaggregated data: in every evaluate target,

the result is reduced or similar (except buy recall in the sim-

ple models), with the best ROC AUC values. We believe

that the models trained by the Fibonacci Aggregation give

the best comprehensive performance of the three aggregat-

ing methods. With 97.5% - 98.5% of the best performance

(the results trained by unaggregated data), it provides data

compression and huge training acceleration.

Table 7: Data compress rate and training time re-

duction rate (Approximation)

Dataset

compressed rate

Training time

reduction rate

Simple
20%

15%

Complex 50%



Table 8: Results of balanced test dataset (buy: not-buy = 1:1)

Buy

Precision

Not-buy

Precision

Buy

Recall

Not-buy

Recall
ROC AUC

Simple 0.7330 0.7387 0.7363 0.7354 0.7358

Simple with Natural Aggregation 0.6645 0.7731 0.8247 0.5892 0.7070

Simple with Fibonacci Aggregation 0.7086 0.7384 0.7528 0.6927 0.7228

Simple with Exponent Aggregation 0.6419 0.7816 0.8492 0.5326 0.6909

Complex 0.7178 0.7476 0.7585 0.7058 0.7322

Complex with Natural Aggregation 0.7414 0.6676 0.5994 0.7937 0.6965

Complex with Fibonacci Aggregation 0.7029 0.7270 0.7390 0.6899 0.7145

Complex with Exponent Aggregation 0.7324 0.6817 0.6352 0.7709 0.7031

Table 9: Results of original test dataset (buy: not-buy = 1:18)

Buy

Precision

Not-buy

Precision

Buy

Recall

Not-buy

Recall
ROC AUC

Simple 0.1375 0.9795 0.7339 0.7343 0.7341

Simple with Natural Aggregation 0.1039 0.9829 0.8221 0.5906 0.7064

Simple with Fibonacci Aggregation 0.1249 0.9797 0.7503 0.6959 0.7231

Simple with Exponent Aggregation 0.0957 0.9842 0.8528 0.5328 0.6928

Complex 0.1295 0.9806 0.7582 0.7058 0.7320

Complex with Natural Aggregation 0.1429 0.9714 0.5948 0.7941 0.6945

Complex with Fibonacci Aggregation 0.1216 0.9786 0.7385 0.6915 0.7150

Complex with Exponent Aggregation 0.1390 0.9734 0.6368 0.7713 0.7040

5 CONCLUSIONS

In this work, we proposed three kinds of data aggregation

methods: Natural, Fibonacci, and Exponent Aggregation.

Then we investigated and discussed the effects made by the

aggregating of the original data. Firstly, the result shows

that the models trained by balanced and unbalanced original

dataset have similar result shape. Then, except Fibonacci

Aggregation, for simple LSTM model, the models perform

better in not-buy precision and buy recall, but worse per-

formance in buy precision and not-buy recall. However, for

complex LSTM model, the results are completely opposite.

On the other hand, the Fibonacci Aggregation performs sim-

ilar with the results trained by unaggregated data. It gives

the best comprehensive performance of the three aggregat-

ing methods. The method provides data compressing and

huge training acceleration with 97.5% - 98.5% of the best

performance.

During the experiments, the biggest problem is data over-

fitting. We had to early stop the training process to get the

best training results. However, all of the ROC AUC scores

are not satisfied, which means that the ability of models is

unsatisfactory. The problems may be as follows:

• The models were not trained enough. Probably there are

some problems with the model and hyperparameters.

• We did not apply dynamic RNN to deal with different

real session length. The padding blocks may interfere

with the training process.

• Some of the features, such as item IDs, may need more

analysis to convert the original features to some more

meaningful features.

We consider that we should pay more attention to data

analysis and feature crafting. Besides, advanced and com-

plex neural networks is also a research point. Moreover, we

should propose better solutions to handle more general and

imbalanced E-Commerce data in the future.

ACKNOWLEDGMENTS

Special thanks to all of the members in Real Sakai Lab.

Thanks for their important suggestions and guidance. Also

special thanks to Nao Toyama, who always gives me emo-

tional support.

References

[1] Breiman, Leo. “Random Forests.” Machine Learning 45

(2001): 5-32.

[2] Friedman, Jerome H.. “Greedy function approximation: A

gradient boosting machine.” (2001).

[3] Rendle, Steffen. “Factorization Machines.” 2010 IEEE In-

ternational Conference on Data Mining (2010): 995-1000.

[4] Rendle, Steffen. “Factorization Machines with libFM.”

ACM TIST 3 (2012): 57:1-57:22.

[5] Wu, Zhenzhou et al. “Neural Modeling of Buying Behaviour

for E-Commerce from Clicking Patterns.” RecSys ’15 Chal-

lenge (2015).



[6] Ben-Shimon, David et al. “RecSys Challenge 2015 and the

YOOCHOOSE Dataset.” RecSys ’15 (2015).

[7] Sheil, Humphrey et al. “Predicting Purchasing Intent: Au-

tomatic Feature Learning using Recurrent Neural Net-

works.” ArXiv abs/1807.08207 (2018): n. pag.

[8] Gligorijevic, Djordje et al. “Time-Aware Prospective Mod-

eling of Users for Online Display Advertising.” ArXiv

abs/1911.05100 (2019): n. pag.

[9] Mikolov, Tomas et al. “Efficient Estimation of Word Rep-

resentations in Vector Space.” CoRR abs/1301.3781 (2013):

n. pag.

[10] Liu Zhiyuan,Sun Maosong,Lin Yankai, et al. “Knowledge

Representation Learning: A Review[J].” Journal of Com-

puter Research and Development, 2016, 53(2): 247-261.


