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Abstract SNS-based surveillance lacks when NLP resources or SNS data are scarce; Wikipedia-based is unreli-

able for widespread languages, and the current search-based is not applicable for low search-volume regions. Thus,

how to conduct Internet-based surveillance when those conditions are not met is still an open problem. Our study

serves as a first step in exploring the potential of conducting disease surveillance with relative search volume with

sliced-timeframes. Our results show that our approach produces predictions with correlations against official patient

numbers, ranging from 72% to 95% in countries with a high Web search volume. In countries with fewer Web search

volume, our models produced correlations of about 62% for Lassa fever and 59% for Yellow fever in Nigeria. In the

contexts CholeraNigeria and CholeraHaiti, our models yielded promising predictions of 47% and 42%, respectively.

Furthermore, the results show that standard regression models are most suitable rather than neural-based models.

Longer lookback windows on category “health” lessen the noise on signal and in overall produces the most stable

results.
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1 Introduction

Epidemic outbreaks cause high mortality worldwide. Malaria

alone caused an estimated 450 thousand deaths in 2016, and

most occurred in developing countries [35]. Disease surveil-

lance is a crucial component of mitigation strategies to mini-

mize outbreaks’ burden on public health [14]. However, con-

ventional surveillance systems have a significant strain of op-

erating costs, and with lags of up to 2 or 3 Weeks to detect

an outbreak [18]. In developing countries, the delays can be

even longer due to fragile health infrastructures.

Given the massive data that people generate online,

Internet-based surveillance has gained much traction as a

complement to conventional systems. Opening opportuni-

ties for countries with a scarcity of resources to establish

fast and affordable surveillance systems.

The widespread usage of social network sites (SNS) has

made them be a recurrent target for several disease surveil-

lance research [18; 3; 8; 7; 1]. Machine learning and NLP

improve SNS data filtering by learning to recognize relevant

content based on richer characteristic rather than keywords

alone [3; 17; 1]. However, SNS-based surveillance have short-

comings. First, processing text data is a challenging task,

and it gets much harder when dealing with low (NLP) re-

source languages. Second, it is becoming arduous to collect

SNS data due to privacy policy changes.

Alternatively, several studies have used Wikipedia access

log to conduct disease surveillance [19; 14; 29]. They adopt

articles’ language as proxies for location. However, this ap-

proach is coarse and unreliable [26], as many languages are

widespread.

Another recurrent target of Internet-based surveillance is

search volume data from Google Trends [20; 4; 34; 16; 28].

However, the prevailing search-based surveillance is only ef-

fective in regions with high search volume. Since the search

volume data is relative to a long and fixed timeframe, i.e.,

the entire period of the study as timeframe.

In short, SNS-based surveillance lacks when NLP resources

or SNS data are scarce; Wikipedia-based is unreliable for

widespread languages, and the current search-based is not

applicable for low search-volume regions. Thus, how to con-

duct Internet-based surveillance when those conditions are

not met is still an open problem.

Our study proposes a different approach to search-based

surveillance. We apply short and sliced timeframes that we

call lookback windows. The advantage of sliced timeframe

over fixed timeframe is that the former generates search vol-

ume even in low search volume regions, such as in developing

countries. Moreover, the goal of the study is to assess the

applicability of the sliced timeframe-based search volume for

surveillance across several contexts, from the developed to

developing countries.

Our contributions are to provide answers for the follow-

ing research questions based on thousands of discrete exper-

iments:

• What is the best regression model to define the rela-



tionship between the sliced-timeframe-based search volume

and patient number?

• How far in the past should we look back (how long or

short the timeframe) to produce the most reliable results?

• Google Trends categorizes search terms; While past

studies have used category types, as best of our knowledge

how much can type of the category impact on a model accu-

racy is still unknown. Thus, what is the category contribu-

tion?

To answer the questions above, experiments in a single

country for a single disease are not enough. Therefore, we

aim to target multiple diseases with different modes of trans-

mission, biology, types of symptoms, length of incubation,

seasonality and prevalence in several countries.

2 Related Work

Internet-based disease surveillance makes use of user-

generated content on the Internet to deliver near-real-time

disease surveillance [13]. The standard pipeline is to filter

relevant data on SNS using keywords, then conduct infer-

ences studies to capture trends and project prediction, and

run validation against official data [18; 8]. However, Keyword

filtering is limited, it does not capture well different contexts

in which the keyword or phrase is being used. For example,

a tweet containing the keyword “flu” might not be relevant

to influenza surveillance when it’s about news reporting and

not the tweet’s user being sick. [3? ; 17; 1] showed that ma-

chine learning and NLP could be used to categorize data for

relevance based on richer characteristic rather than keywords

alone.

However, SNS-based approaches have shortcomings. Ap-

plying SNS for multiple disease surveillance across numerous

countries can be arduous work, and in some instances, even

not applicable. First, processing text data is a challenging

task, and it gets much harder when dealing with low (NLP)

resource languages. Second, with constant-changing in pri-

vacy policies and increase of privacy awareness among social

media users, it is becoming arduous to collect social media

content. For instance, in response to the Cambridge Analyt-

ica scandal [30], Facebook announced heavy restrictions [31]

on data collection. Moreover, Twitter provides unpaid access

only to 1% of real-time tweets (via its streaming API) and

a highly rate-limited search to seven days in the past (via

search API) and prohibits sharing historical data among re-

searchers.

Another approach is to apply SNS data as exogenous vari-

ables to autoregressive exogenous models [27], which make

them contingent on the availability of past official incidence

data from conventional systems. While it might not be an

issue in countries with functioning conventional surveillance

systems, it might render the models ineffective when those

systems are inefficient or non-existing.

Studies have Wikipedia access log to conduct disease

surveillance [19; 14; 29]. [14; 29] applied Wikipedia access log

to global scale surveillance, and they tested their approaches

in several location-disease contexts around the globe. They

used article’s language as proxies for location, such as solv-

ing Japanese-language article to Japan. However, this ap-

proach is coarse and unreliable [26], as many languages are

widespread.

2 1 Search-based Surveillance

Google holds about 87.51% share of mobile search traffic

worldwide（注1）. Google Trends provides access to a largely

unfiltered sample of actual search requests made to Google.

It’s anonymized, categorized and aggregated (grouped). For

a given search term in a particular location, Google Trends

provides its Relative Search Volume (RSV) as the propor-

tion of searches related to that term against all Google

Searches on that location over time period (hereafter refer

to as timeframe)[23]. Thus, the RSV is scaled on a range of

0 to 100 based on the term’s category, the location, and the

time timeframe.

Several past studies have used Search Volume for disease

surveillance. [20; 4; 34; 16; 28] obtained keywords whose

Search Volume correlated with the official incidence cases.

Furthermore, [6; 2] observed that Linear models fitted with

a fraction of search volume for specific dengue-related queries

against the official dengue case counts yielded high correla-

tions on held-out test datasets. However, the current RSV-

based surveillance have similar methodology: First, the RSV

data is relative to a fixed timeframe, i.e., the entire period of

the study as timeframe. For example [20; 4] used a timeframe

of about 11 years. This approach applies to developed world

or regions with a high search volume, in which the signal

of health-related searches relative to a long and fixed time-

frame is strong enough to appear in Google Trends. However,

in developing countries or regions with low search users, a

fixed timeframe may not even produce RSV data because the

search volume may not be above the threshold that Google

Trends considers a popular search for that period. Second,

they had a similar purpose, which was to assess if RSV of

search terms related to their disease of interest correlated

with official incidence data.

In summary, SNS-based surveillance lacks when NLP re-

sources or SNS data are scarce; Wikipedia-based is unreli-

able for widespread languages, and the current search-based

is only effective in countries or regions with high search vol-

ume. Thus, how to conduct Internet-based surveillance when

（注1）：https://www.netmarketshare.com/search-engine-market-share.aspx



those conditions are not met is still an open problem.

3 Material

3 1 Gold Standard Data: Patient Numbers

We sought to test several epidemic and pandemic-prone

diseases in multiple countries, from developing to developed

countries, in various climates, and with different level of In-

ternet coverage. Similar to [14], we also sought to target

diseases with diverse modes of transmission (e.g, airborne

droplet, vector, sexual, ...), biology, types of symptoms,

length of incubation, seasonality, and prevalence [14]. Ad-

ditionally, we needed reliable gold standard data, and with

high temporal granularity (preferably, weekly or daily inci-

dence values) for at least close to two years-long of reports.

However, such data are not always publicly available. Table

1 shows all diseases and their locations that make up our

gold standard data. In total 8 disease-location contexts were

analyzed.

3 2 Search Volume Data: Relative Search Volume

(RSV)

3 2. 1 Search Term Selection

We applied three different techniques together to gather

the terms we used to collect search volume data related to

diseases of interest. Firstly, We used crowdsourcing (Amazon

Mechanical Turk, Mturk（注2）) to ask people about what

search terms they have used or would have used to search

on Google about our targeted diseases. Then, from medical

references, we collected the most common symptoms associ-

ated with each disease. Lastly, we added more related terms

from Google Trends suggestions. Table 2 shows the list of

all terms by contexts and types.

3 2. 2 Data Pulling Strategy

we defined four types of lookbacks: 7 days, 14 days, 30 days

and 90 days. For each week in our Gold standard dataset for

any context, we collect the past 7 days, 14 days, 30 days and

90 days of RSV data for each search-term defined on the Ta-

ble 2. We collect the data two times, first using setting the

category to “all” and second time setting it to “health”. We

used an unofficial API for Google Trends（注3）that allows

simple interface for automating downloading of reports from

Google Trends.

4 Method

We sought to appraise the applicability of RSV with sliced-

timeframes for multiple diseases surveillance. Furthermore,

We aim to find the relationship between RSV with short

timeframes and disease incidence cases. The present section

（注2）：https://www.mturk.com/help

（注3）：https://github.com/GeneralMills/pytrends

describe the approach We use to find such relationship.

4 1 Task Definition

Let us define the disease surveillance problem as a regres-

sion task. Denote by Xt ∈ Rn×T the RSV for a given context

at the time t, where n is the number of search terms, and

T is the size of the timeframe or Lookback Window, e.g.,

RSV at week t of terms “flu” and “fever” for past 7 days.

Thus, the task is to predict the incidence cases y of a disease

associated with the search terms at a future time point t+h

through a regression function f , as shown on Figure 1, where

h is the horizon of the prediction, and h = 0 is nowcasting

and h > 0 is forecasting. For the size of T we considered 7

days, 14 days, 30 days, and 90 days.

Figure 1: Proposed approach

4 2 Standard Regression Models

To define a f that describe the relationship between the

RSV and disease incidence cases, we first apply standard re-

gression models such as Lasso, Ridge (and bayesian Ridge),

and support vector regression. Lasso and Ridge’s regressions

are linear models. Linear models are simple, yet they pro-

vide an adequate and interpretable explanation of how the

features affect output, they can sometimes outperform more

complex nonlinear models, particularly in situations with

small numbers of training samples, low signal-to-noise ra-

tio or sparse data [15]. Similarly, Support Vector Regression

algorithms come from SVM (Support Vector Machine), and

SVM algorithms can generalize the unseen data efficiently in

a high dimensional feature space [32; 22].

As we defined in the previous section, the search volume at

timestamp t is represented as X(n, T ), and before applying

into the regression models, we transform the X(n, T ) matrix

into one dimension matrix X(1, n ∗ T ), and consider each

value in the matrix as an independent feature, since these

models accept the input in the format of one dimension ma-

trix.

4 3 Neural-Based Regression Models

In the previous point, we define the f from Figure 1 as a

standard regression models to describe the relationship be-

tween RSV and patient numbers. We transformed the search

volume matrix into one dimension matrix and assumed each



Table 1: Gold standard data with a total of 8 disease-location contexts. Include min, max and mean of patient counts.

Disease Country Start End Resolution Min Max Mean Source
Cholera Haiti 12-05-2010 12-05-2012 Daily 0 3687.28 51 [14]

Nigeria 03-20-2017 12-30-2018 Weekly 0 2929 589.02 [21]

Dengue Brazil 07-03-2010 03-16-2013 Weekly 419 84144 17268.74 [14]

Influenza Japan 06-26-2010 07-05-2013 Weekly 0 1668 173.79 [14]
Poland 10-17-2010 10-23-2013 Weekly 0.0 1668 1222.73 [14]

US* 01-01-2011 01-10-2014 Weekly 0.0 6.06 1.74 [14]

Lassa Fever Nigeria 01-08-2011 12-30-2018 Weekly 0 70 10.49 [21]

Yellow Fever Nigeria 02-07-2017 12-30-2018 Weekly 20 112 51.60 [21]

* we used weighted numbers instead of the actual number of patients.

Table 2: Search terms by context and types.

term types
Context name-based and symptoms-based generic*

related-name-based

InfluenzaUS influenza, flu fever,chills sweat,fatigue weakness symptoms, shot
sore throat,aching muscle treatment, vaccine
headache, persistent cough signs

InfluenzaJapan インフルエンザ，インフル 高熱，寒気 治療，アウトブレイク，症状
風邪，かぜ タミフル，リレンザ

DengueBrazil dengue, chikungunya febre alta, enjoos, vomito, dor de cabeça sintomas, sinais,
febre amarela, malaria manchas, coceiras, pontos vermelhos pele tratamento

dor atrás olhos, mal-estar e cansaço vacina, propolis

InfluenzaPoland grypa goraczka,bó l g lowy, ch lód, ból gard la, zmeczenie objawy, leczenie, szczepionka

LassaFeverNigeria lassa fever, yellow fever fever, headache, myalgia symptoms, therapy

malaria nausea, vomit, fatigue, diarrhoea outbreak,treatment
sore throat, malaise

Y ellowFeverNigeria yellow fever, lassa fever fever, headache, myalgia, jaundice symptoms, therapy

malaria, chikungunya nausea, vomit, fatigue, diarrhoea outbreak,treatment
sore throat, malaise

CholeraNigeria cholera nausea, vomit, diarrhoea ,watery diarrhoea symptoms,therapy

treatment, outbreak

CholeraHaiti choléra, cholera nausée, vomi, diarrhée, diarrhée aqueuse symptômes, thérapie
traitement, épidémie

*: We use the character space to form term pair-wise between name-based terms and generic terms, e.g., “flu” and “shot” to become “flu shot”

GRU-based RNN GRU-based enc-dec
GRU-based enc-dec with attention mecha-

nism

Figure 3: Neural-based regression models.

value in the matrix as an independent feature. On the con-

trary, in this section, we imply that the elements of the RSV

sequence are related to each other and their order matters.

Therefore, we attempt to use a class of neural networks that

can preserve that temporal dependency of our inputs (RNN,

encoder-decoder and att. encoder-decoder).

We use GRU-based RNN (Gated Recurrent Unit) [9; 10;

11] to capture the temporal dependencies within our RSV

sequence, Figure 2a. For encoder-decoder, we use a simple

architecture similar to that proposed by the original authors,

[9] and [33]. Having a simple architecture is more suitable to

our problem because we deal with data-deficient situations

for most of our contexts (country-disease). Furthermore, in

our architecture, as we show in Figure 2b, we use GRU-based

RNN as both the encoder and the decoder.

The attention mechanism improves the performance of

enc-dec in longer sequences [? ] by focusing much more

at specific parts of the encoded-sequence when decoding it.

In our problem, we attempt to use the attention mechanism

to force the decoder to give adequate focus at specific parts

of the encoded RSV sequence.

5 Experiment

In this section, we describe the procedures we took to im-

plement our models, the variety of experiment we conducted,

and how to evaluate the results.

5 1 Implementation Setup

We attempt to establish the relationship between the RSV

and disease incidence cases first applying standard and ro-

bust regression models such as Lasso, Ridge (and bayesian

Ridge), and support vector regression. Moreover, to imple-

ment those models, we utilised Scikit-learn tool（注4）. The

results we report are from the default configuration for each

method.

（注4）：https://scikit-learn.org/stable/



Alongside using standard regression models, we also im-

plied that the elements of the RSV sequence were related to

each other and their order mattered. Using PyTorch [25],

we implemented a GRU-based RNN, an encoder-decoder,

and an encoder-decoder with an attention mechanism. To

train these models, we used mean squared error (MSE) with

a mean reduction, applying Stochastic Gradient Descent

(SGD) optimizer with a learning rate set to 0.001. We used

30 hidden states for the GRU cells, dropout set to 0.2.

5 2 Evaluation

For evaluation, we used a moving window approach with

one-week held-out, starting at 50% of the datasets, i.e., we

initially train with the first 50% and predict one week ahead.

Add that week to the train set and move one step forward

and repeat the process. We use Pearson’s Correlation Coef-

ficient (CORR) to compare our predictions against the gold

std data.

We heuristically created several groups of the search terms

(see Table 2), i.e., we take a search term set (e.g., name-based

search terms) alone and consider it one group, combine it

with other search terms set and consider it a different group,

and so on. Per each search term group in a given context, we

evaluate in both categories (“all” and “health”), for all stan-

dard regression models. In each category, we try all the four

lookback windows (7 days, 14 days, 30 days and 90 days).

For the case of neural-based regression models, we did not

run an exhaustive evaluation. Instead, in each context, we

chose settings (search term group, category and lookback)

based on the performances from standard regression models,

highest for each case.

6 Results and Discussion

Table 3 shows a summary of best performances from each

lookback, category, and for all contexts from an exhaustive

evaluation using standard regression models. Our results

show that in general, models built with RSV with short time-

frames can predict the patient number in high volume Inter-

net users countries and moderate successful predictions in

countries with low volume Internet users. Figure 8b shows

the results from a Bayesian ridge regression trained with

name-based search terms and a lookback of 7 days predicted

with success about two Japanese influenza’s seasons even

though that by the first predicted season the model had only

seen one peak season, and that shows the model generalized

quite well. In the contexts influenzaUS and dengueBrazil,

Figure. 8a 8c, our models produced predictions overall close

to the official patient numbers.

InfluenzaPoland and LassaFeverNigeria (Figure 8d and

8e) present fascinating cases, in both, our models failed to

catch the height of the outbreaks but predicted peaks similar

to those previously known. These cases could probably be

some isolated incidences caused by noise on the signal or a

limitation of our approach. By definition, RSV of a given

term for a specific period is the query share of the term nor-

malized by the highest query share of that term over the

specified period. In our assumption, two outbreaks peaks

with different intensity could produce similar RSV leading

to fault prediction such as those we observed in Figure 8d

and 8e. However, to assert this assumption, more contexts

with similar data characteristics are required.

In developing countries or rural areas, fewer people have

access to Internet services. Moreover, as accounted by [6; 5],

Web-query based surveillance depends on sufficient Web

search volume in order to be statistically representative of

the country or area health situation. Taking that into per-

spective, we consider our results from LassaFeverNigeria

and Y ellowFeverNigeria to be relatively successful results

despite that our models produced correlations bellow 70 %.

Our models failed to produce correlation above 50 % in the

contexts CholeraNigeria and CholeraHaiti. The data from

Haiti are from right after the 7.0 Magnitude earthquake [12]

in 2010 which left the country with about half of the infras-

tructure damaged including communication systems, hence

decreasing the already-small number of people with an In-

ternet connection.

Another limitation, not particular to our approach but to

the Web-based surveillance, in general, is that even if we cap-

ture the real signal from sick people, we can not ensure what

the next action of the individual is going to be. For example,

[24] found that in a rural area in Cambodia, about 67% of

cases of hemorrhagic fever were treated at home instead of

at a “health” clinic. Self-treatment do not make it to official

patient number recorded by the government, and this can

lead to problems in Web-based surveillance systems.

6 1 Regression Model Type

We attempted to use two classes of regression models to in-

terpret the relationship between RSV and patient numbers.

Table 4 presents a summary of the performance of neural-

based regression models. It distinctly shows that they are

not adequate models for this problem; the data size is too

small for neural networks. Moreover, we have left with stan-

dard regression models.

On the previous point, we analysed Figure 7 from the cat-

egory perspective, and now we are going to look at it from

the regression model standpoint. One impression that we

can have from it immediately is that all regression models

have close maximum values (top of the interquartile), which

means that any regression model can reach the top perfor-

mance at a specific configuration (search terms, lookback

and category). However, for the performances in all config-



Table 3: Top results by context, category and lookback windows

Category: all Category: health
context Lookback Lookback

7 days 14 days 30 days 90 days 7 days 14 days 30 days 90 days

corr 0.343 0.270 0.641 0.843 0.364 0.618 0.677 0.828
InfluenzaUS model RR B-RR SV Rlinear LR B-RR SV Rlinear B-RR SV Rlinear

searchterms name all generic all name + sympt generic generic name

corr 0.910 0.904 0.907 0.875 0.914 0.897 0.905 0.855
InfluenzaJapan model B-RR B-RR B-RR B-RR B-RR B-RR B-RR RR

searchterms name* name* name* all name name name name

corr 0.957 0.947 0.955 0.946 0.947 0.943 0.945 0.950
DengueBrazil model B-RR B-RR B-RR RR B-RR B-RR B-RR RR

searcterms generic generic generic all generic generic generic all

corr 0.271 0.191 0.355 0.764 0.446 0.251 0.300 0.727
InfluenzaPoland model LR LR LR B-RR LR B-RR LR B-RR

searchterms sympt sympt name + sympt all generic sympt all sympt

corr 0.338 0.391 0.518 0.624 0.355 0.462 0.498 0.613
LassaFeverNigeria model LR SV Rlinear LR SV Rpoly B-RR LR B-RR SV Rlinear

searchterms name* genric name* name* generic genric name* name*

corr 0.272 0.357 0.469 0.358 0.211 0.457 0.595 0.405
Y ellowFeverNigeria model SV Rpoly RR SV Rpoly SV Rpoly SV Rsig SV Rpoly B-RR B-RR

searchterms generic generic all name* generic name* all generic

corr 0.409 0.409 0.180 0.261 0.288 0.477 0.287 0.338
CholeraNigeria model SV Rpoly RR SV RPoly LR SV Rlinear SV Rlinear SV Rpoly SV Rpoly

searchterms generic generic generic generic generic generic generic generic

corr 0.422 0.366 0.357 0.361 0.363 0.360 0.359 0.421
CholeraHaiti model SV Rpoly SV Rsig SV Rpoly SV Rsig SV Rlinear SV Rsig SV Rsig B-RR

searchterms sympt name name all name all name name

B-RR - Bayesian Ridge Regression, LA - Lasso Regression, RR - Ridge Regression;
SV Rpoly , SV Rlinear , SV Rsig - Support Vector Regression with Polynomial,Linear and sigmoid kernel, respectively.

name: name-based search terms; name* : name-based plus related-name search terms; generic: generic-based search terms;
sympt: symptoms-based search terms; all: using all available search terms.

Influenza-US Influenza-Japan Dengue-Brazil Influenza-Poland

Lassa Fever-Nigeria Yellow Fever-Nigeria Cholera-Nigeria Cholera-Haiti

Figure 5: Performances’ distribution by lookback, category and context

Table 4: Average performance of RNN-based regression models

Neural-based Models
Context GRU-based RNN Enc-Dec Att. Enc-Dec

InfluenzaUS 0.201 0.160 0.141

InfluenzaJapan 0.289 0.260 0.210

DengueBrazil 0.301 0.281 0.207

InfluenzaPoland 0.224 0.215 0.198

LassaFeverNigeria 0.091 0.042 0.041

Y ellowFeverNigeria 0.090 0.030 0.033

CholeraNigeria 0.072 0.068 0.071

CholeraHaiti 0.099 0.089 0.561

urations, the Support Regression Models have lower results

compared to other models in most of the contexts. In overall

Bayesian Ridge Regression have higher results.

6 2 Lookback Window

One of the main concern raised about using Web data

for disease surveillance is that this approach suffers from

false warnings caused by noise signals. Not everyone posting

content on social media mentioning a disease, or individual

searching about an illness on the Internet is ill. Sensational-

istic media coverage of an outbreak can lead to an increase

in search activity or on volume created on social media, con-

sequently producing a false warning on surveillance systems.

Systems built with social media content address this issue

through the use of machine learning and Natural Language

Processing to filter out irrelevant content. However, current

systems built with RSV via Google Trends are still suscepti-

ble to this issue because the original searches are not avail-

able. Our results on Figure 5 show that in general, longer

lookbacks performed better. Fake spikes in search activity

caused by panic-induced searches fade away over time, and

this is expressed by the improvement in the performance of

our models when the lookback increased. Influenza is an

epidemic in Japan and with a consistent seasonality, and

probably made it less prone to panic-induced searches dur-



Influenza-US Influenza - Japan
Dengue - Brazil Influenza - Poland

Lassa Fever - Nigeria Yellow Fever - Nigeria Cholera - Nigeria Cholera - Haiti

Figure 7: Performances’ distribution by regression model, category and context

Influenza - US
Influenza - Japan Dengue - Brazil

Influenza - Poland

Lassa Fever - Nigeria Yellow Fever - Nigeria Cholera - Nigeria Cholera - Haiti

Figure 9: Real patient number against predictions by the context’s best model (see Table 3)

ing the period of the study which may explain the close per-

formances among all lookbacks on this context but still the

longest being the best.

6 3 Category

Figures 5 and 7 show a side-by-side comparison between

our models’ performances in both categories across lookbacks

and regression models, respectively. In Figure 5, compar-

isons across lookbacks, 32 times out of 40 comparisons (about

80%) the category “health” showed better results. We used

two criteria to compare. First, we compared the absolute

value of the median of the interquartile range, higher mean-

ing better. Second, when the medians had equal or close

absolute values, we considered better the category with a

more compact interquartile. Fig. 7 shows much more clear

and comparable results, within the same regression model

the category “health” performed better than the category

“all”.

Our results show that category’s type have a significant

impact on model accuracy and in our task.

7 Conclusion

We proposed sliced timeframe-based search volume ap-

proach for disease surveillance. Our results showed that our

models produced predictions with correlations against offi-

cial patient numbers, ranging from 70% to 95% in countries

with a high Web search volume, such as US, Japan, Brazil

and Poland. In countries with fewer Web search volume, our

models produced correlations of about 62% for Lassa fever

and 59% for Yellow fever in Nigeria, which we considered

successful mid results. In the contexts Cholera - Nigeria and



Cholera - Haiti, our models yielded promising predictions of

47% and 42%, respectively. We showed that our approach

performed adequately with longer lookback windows and on

category health using standard regression models.
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