
DEIM2020 F3-1

Trends Tracking Memory Recommender Networks for Product

Recommendations in E-commerce

Zhi LI†, Boqi GAO†, Daichi AMAGATA†, Takuya MAEKAWA†, Takahiro HARA†, Hao NIU††,

Kei YONEKAWA††, and Mori KUROKAWA††

† Graduate School of Information Science and Technology, Osaka University

1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan

†† Integrated Analysis Platform Laboratory, KDDI Research, Inc.

Chiyoda-ku, Tokyo, 102-8460, Japan

E-mail: †{li.zhi,gao.boqi,amagata.daichi,maekawa,hara}@ist.osaka-u.ac.jp,

††{ha-niu,ke-yonekawa,mo-kurokawa}@kddi-research.jp

Abstract In the online e-commerce recommendation field, changes of the market trends and user preferences be-

come a new challenge to existing recommender systems. To tackle this challenge, prior studies have proposed neural

memory recommender networks (NMRNs), which have external memories to capture the changes of the market

trends and user preferences. Unfortunately, NMRNs cannot precisely capture the changes and suffer from computa-

tional inefficiency. This paper solves these problems and proposes a market-based memory updating strategy. This

strategy enables the memory networks to flexibly adjust its memory updating frequency. Besides, we utilize a naive

pairwise Hinge-loss to enable the memory networks to be trained in parallel by a mini-batch of user-item interac-

tions. Experimental results show the superiority of our proposed methods in terms of recommendation accuracy

and computational efficiency.

Key words Recommender Systems, Online E-commerce Recommendation, Memory Network, Market Trends,

Dynamic User Preferences, Generative Adversarial Networks,

1. Introduction

With the explosive growth of available online information,

users spend a long time to select their suitable items from

many products, movies, and restaurants. A recommender

system is an intuitive and effective choice to defend against

this consumer over-choice [1]. Moreover, utilizing a recom-

mender system becomes a general way to improve user ex-

periences and supplier profits. Recently, such systems have

been studied and applied in a variety of fields, e.g., online

movie recommendations in Netflix [2], video recommenda-

tions on YouTube [3] and academic collaborator recommen-

dations [4].

In general, recommender systems can be categorized into:

collaborative filtering recommender systems [5] and content

based recommender systems [4]. Collaborative filtering ones

generate recommendation lists based on user-item interac-

tion records, while content-based ones are trained on the

user and item side information (e.g., description of items in-

cluding texts, images, and videos). Since content-based rec-

ommender systems strongly rely on domain-specific side in-

formation, it is hard to design robust recommender systems.

Therefore, to build a robust recommender system that does

not rely on side information, many studies focus on collabo-

rative filtering recommender systems.

Traditional collaborative filtering recommender systems [5]

learn recommendation lists by encoding users and items into

a latent space and represent users and items with user prefer-

ence vectors and item attributes vectors, respectively. Many

studies assume that user preferences and item attributes are

static. However, the information in the real-world is always

dynamic. For example, [6] has introduced three temporal and

dynamic factors in a movie recommendation field: changes

in movie perceptions, seasonal changes, and user interests.

Static preference-based recommender systems cannot prop-

erly process these dynamic factors, resulting in bad recom-

mendation performance. As in the case of the movie domain,

static recommender systems also perform poorly in online e-

commerce platforms, in particular for the case of online dis-

count sales [7]. This is because static recommender systems

cannot track fast-changing trends, and e-commerce websites

change their products frequently to follow the trends.

To remove the drawback of static recommender systems,

many studies capture temporal information by using recur-

rent neural networks (RNN) and long short-term memory

(LSTM) based models [6,7,8]. However, most of these RNN

and LSTM-based models can serve only for session-based

recommender systems [9], which can process only time-series

data. RNN and LSTM-based models have limitations in

capturing users’ stable interests and inherent attributes of

items because they update all the memory cells at each step.

Besides, session-based recommender systems usually ignore

users with few interactions to improve recommendation per-

formance, because they have a poor performance for such

users. Therefore, the session-based models cannot process

the real-world highly sparse data well.

To relieve these restrictions, in [9], Wang et al. has de-

veloped a novel recommender system named neural memory

recommender networks (NMRNs) based on key-value mem-

ory networks (KV-MemNN) [10]. Different from RNN and

LSTM, KV-MemNN can read and write a part of memories,

which means both the users’ long-term stable preferences and

short-term dynamic interests can be captured. However, the

memory of NMRN is frequently updated for each user-item

interaction. This incurs two severe problems; i) the learning

speed is slow due to a large amount of memory update op-

erations, and ii) the accuracy of recommendation is not high

enough because NMRN is too sensitive to the latest trends

(NMRN tracks the trends by utilizing the most recent item).

Therefore, it ignores valuable old trends.

In this paper, we overcome the above-mentioned problems

of NMRN. We propose a market-based memory update strat-

egy for NMRN. In our strategy, instead of directly applying

the most recent item to update the memory, we create a

market vector which is aggregated by a mini-batch [11] of

items to represent the changes of the market trends, and

we update the memory with this market vector. With our

network structure, the NMRN can be trained in parallel by

mini-batch. Therefore, the training speed can be extensively

accelerated. Furthermore, updating the memory of NMRN

per mini-batch can reduce the influence of a single user-item

interaction. The sensitivity of the NMRN thus is decreased,

and the network can utilize valuable old trends, resulting in

a high recommendation accuracy.

Our main contributions of this paper are summarized as

follows.

• We improve the network structure of NMRN and pro-

pose a market-based memory update strategy for NMRN. In

particular, we create a market vector to represent recent mar-

ket trends. This improvement enables NMRN to be trained

in parallel by mini-batch of user-item interactions.

• We conduct extensive experiments based on our real-

world e-commerce dataset. The experimental results show

that our model significantly outperforms NMRN in terms of

accuracy and computational efficiency.

The rest of this paper is organized as follows. We review

related works in Section 2. Then, we introduce NMRN in

Section 3. Next, our proposed framework is described in

Section 4. 1 The details of the experiments are reported in

Section 5. Finally, this paper is summarized in Section 6.

2. Related Work

2. 1 Collaborative filtering recommender systems

Basic collaborative filtering recommender systems gener-

ate recommendation lists based on user-item historical in-

teractions, either explicit (e.g., previous ratings) or implicit

feedback (e.g., browsing history). One of the most famous

methods is matrix factorization (MF) [5,12]. It learns latent

vectors which can represent static user interests and item

inherent attributes from user-item interaction records. How-

ever, temporal and dynamic information are significant fac-

tors when designing personalized recommender systems, in

particular, real-world online e-commerce platforms. There-

fore, [13, 14, 15] have proposed session-based models, which

can catch the sequence of information from users’ historical

behavior sessions by utilizing RNNs or LSTMs. However,

they can process only time-series data and they ignore users

with few interactions.

2. 2 Memory networks

Neural memory networks (MemNNs) are novel learning

models inspired by the recent advances of modern computer

architectures [16]. MemNNs can flexibly manage their mem-

ories because they read and write a part of memory com-

ponents [17]. In [18], Weston et al. firstly proposed the

concept of MemNNs. They have proved that MemNNs out-

perform RNN because the representation ability of MemNNs

is higher than that of RNN and they can capture a trend

changes. Later on, MemNNs have been utilized in many ap-

plications such as question answering [10,19] and knowledge

tracking [20]. MemNNs have also been utilized in recom-

mender systems. In [9], Wang et al. firstly utilized MemNNs

to build recommender systems. Their MemNN-based model

can track market trends and capture the inherent stable pat-

tern of users. However, their model has low computational

efficiency because it updates its memory based on a single

item. Online e-commerce recommendations require models

with high computational efficiency to improve their profits.

Therefore, a model with high computational efficiency should

be considered.

𝒘

𝑢

𝑨

𝑣

𝑩

𝒗

𝒖

𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝑴𝒌

𝑴𝒕
𝒗

𝒑

𝑴𝒕−𝟏
𝒗𝑴𝒕+𝟏

𝒗

𝒆𝒕𝒂𝒕

1

𝒗

𝑠𝑖𝑔𝑚𝑜𝑖𝑑𝑡𝑎𝑛ℎ

𝒗−

𝒗
𝑣

𝑩

𝑙𝑜𝑠𝑠

D

𝑭

𝒗

𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5

𝒖

MLP

𝑃𝐺

𝑃
1
=
0
.1

𝑣− = 𝑣3

𝑩

𝑃
2
=
0
.1

𝑃
3
=
0
.4

𝑃
4
=
0
.2

𝑃
5
=
0
.2

sampler

G

𝑬

Figure 1 The architecture of NMRN. NMRN contains a discrimi-

nator, which measures the similarity between users and

items, and a generator, which selects negative items

that are informative for users.

3. Neural memory recommender network

(NMRN)

In this section, we describe the architecture of the original

NMRN, which is shown in Figure 1. NMRN is a recom-

mender system based on KV-MemNN and generative adver-

sarial networks (GAN) [21], which are composed of a discrim-

inator (D) and a generator (G). The generator of NMRN is

a Multi-Layer Perceptron (MLP), which samples informa-

tive negative items for a specific user. The discriminator

of NMRN is a key-value memory network, which measures

similarities between users and items. After the discrimina-

tor creates the similarities between a particular user and all

items, NMRN selects the most similar items to the user as

the recommendation lists for her. Note that we denote ma-

trices and vectors with bold capital letters and bold small

letters, respectively.

3. 1 Discriminator preliminaries

The total numbers of users and items are denoted as N

and M . Let an observed user-item interaction pair be de-

noted by (u, v). u is the one-hot representation of a user and

v is the one-hot representation of an item. Then, the original

NMRN obtains the user vector u by multiplying u with user

embedding matrix A and the item vector v by multiplying

v with item embedding matrix B, where u and v are real-

valued vectors with r dimensions, size of A and B is N × r

and M × r.

3. 2 Architecture of the discriminator

NMRN assumes that users have two categories of interests:

static and dynamic interests. Static interests show long-term

interests (e.g., a color that a particular user always prefers),

while dynamic interests show short-term interests (e.g., a

recent popular electronic product). Therefore, in the dis-

criminator, two matrices are utilized to represent these two

categories of interests. One of them is a key memory ma-

trix Mk that represents the static interests, and the other

is a value memory matrix Mv
t that represents the dynamic

interests. The size of Mk and Mv
t is L× r

We first explain Mk. Mk represents existing latent factors

about users’ static interests, and different users have differ-

ent tastes on these latent factors. The similarities between

users and these existing latent factors are measured by the

Euclidean distance:

simi =
∥∥∥u−Mk(i)

∥∥∥ (1)

where simi is the similarity between u and the ith existing

latent factor Mk(i). Then, an attention weight vector w

with size L is obtained as follows (take the ith one, w(i), as

an example):

w(i) = Softmax (− simi) (2)

By applying negative similarities, the most similar memory

slots generate the largest weight.

Then, we introduce Mv
t , which stores dynamic latent fac-

tors (e.g., trends and discounts). Different from a key mem-

ory matrix, the value memory matrix is updated with recent

items over time. Then, a vector p, which represents user

preferences named proxy preference vector, is calculated by

multiplying each value memory slot with corresponding at-

tention weight:

p =

L∑
i=1

w(i)Mv
t (i) (3)

After obtaining p, the discriminator applies the Euclidean

distance d to measure the similarities between a user u and

an item v:

d(u, v) = ||p− v|| =
√∑

i

(pi − vi)2. (4)

A user’s proxy preference vector p should be similar to in-

teracted items and different from non-interacted items. Pair-

wise Hinge-loss [22] can pull positive items (item vector)

closer and push negative items (negative item vector) further

from a specific user (proxy preference vector). NMRN ap-

plies a novel Weighted Approximate-Rank Pairwise (WARP)

loss function [22] based on Hinge-loss. The WARP loss func-

tion is defined as follows:

L =
∑

(u,v)∈S

∑
v−∼V−

u

wu,v ∗
∣∣m+ d(u, v)− d

(
u, v−

)∣∣
+

(5)

where |z|+ = max(z, 0) denotes the standard Hinge-loss, m

is a safety margin size which should be larger than zero, S

is the user-item interaction data utilized for training, v− is

a negative item sampled by generator, and V−
u is a subset of

items that u has never interacted with. Besides, wu,v denotes

the penalty of a positive item v:

wu,v = log (ranku,v + 1) (6)

where ranku,v denotes the rank of item v in u’s recommen-

dation list. Because ranking all items results in a high com-

putational cost, NMRN ranks sampled negative items. The

approximate rank is calculated as:

ranku,v ≈
⌊
N − 1

Nu,v

⌋
(7)

Note that N is the total number of items and Nu,v is the

number of negative items that need to be drawn until v−

satisfies d(u, v)− d
(
u, v−

)
+m > 0.

3. 3 Memory update of discriminator

As mentioned above, the value memory matrix Mv
t repre-

sents the dynamic interests of users at time t. Since markets

and trends are always changing, the discriminator updates

the value memory matrix to mimic the trends of the market

and adapt to the changes in user preferences. Let Mv
t+1 de-

note the value memory matrix after being updated. NMRN

utilizes two steps, erasing and adding steps, to update the

value memory matrix from Mv
t to Mv

t+1.

In the erasing step, the value memory matrix Mv
t is par-

tially erased and modified by an erased vector et:

M̃v
t+1(i) = Mv

t (i) ◦ [I− w(i)et] (8)

et = Sigmoid (Wev + be) (9)

where I is a vector with each element being 1, ◦ is element-

wise multiplication, We is a linear transformation matrix

and be is a bias vector. In the adding step, an add vector at

is calculated in a similar way:

at = Tanh (Wav + ba) (10)

where Wa and ba are linear transformation matrix and bias

vector, respectively. Finally, the value memory matrix at

time t+ 1 is obtained as follows:

Mv
t+1(i) = M̃v

t+1(i) + w(i)at (11)

In the training phase, NMRN randomly samples a mini-

batch of interactions Sbatch from S and updates Mv
t per sin-

gle interaction. Different from updating memory, NMRN ac-

cumulates the gradient of a single interaction between Sbatch.

Then, NMRN updates its parameters by accumulated gradi-

ents.

3. 4 Generator

The goal of the generator is to generate plausible negative

items that confuse the discriminator so that the discrimina-

tor can generate better-ranked recommendation lists. There-

fore, the objective function is to maximize the expectation

of the similarity measured by the discriminator. The loss

function of the generator LG is described as follows:

LG =
∑

(u,v)∈S
v−∼PG(v−|u,v)

E
[
−dD

(
u, v−

)]
(12)

where −dD(u, v) denotes the similarity between a user u and

an item v measured by the discriminator. The distribution

PG

(
v−|u, v

)
is calculated as:

PG

(
v−|u, v

)
=

exp
(
−dG

(
u, v−

))∑
v̄∈V−

u
exp (−dG(u, v̄))

(13)

where dG(u, v) is the Euclidean distance between user u and

item v calculated by the generator. The transformation ma-

trices E and F encode users and items to embedded vectors.

Embedded user and item vectors share the same MLP to en-

sure that they are projected to the same space. V−
u is a subset

of all items that have no with user u, and v̄, which denotes a

candidate of negative items, is selected by uniformly at ran-

dom to reduce computation time. The generator utilizes a

policy gradient based reinforcement learning to optimize LG.

Therefore, the gradient of LG is calculated as:

∇θGLG =
∑

(u,v)∈S

Ev− ∼PG
[−dD

(
u, v−

)
∇θG logPG

(
v−|u, v

)
]

≃
∑

(u,v)∈S

1

T

T∑
v−
i ∼PG,i=1

[−dD
(
ui, v

−
i

)
∇θG logPG

(
v−i |u, v

)
]

(14)

3. 5 Top-k recommendations

To generate recommendation lists for users, all the simi-

larities between users and items are calculated by the dis-

criminator. Then, to generate a recommendation list for a

specific user, items, which have no interaction with this user,

are ranked by calculated similarity. Finally, the k most sim-

ilar items are recommended to this user.

4. Market based neural memory recom-

mender network (MB-NMRN)

In this section, we present the details of our market-based

memory update strategy, which enables NMRN to be more

flexible to adjust the update frequency of its memory. By

combining the mini-batch memory update strategy and a

naive pairwise Hinge-loss, MB-NMRN can compute a mini-

batch of user-item interactions in parallel.

1D Conv

𝑽𝒃𝒂𝒕𝒄𝒉

𝑾𝒃𝒂𝒕𝒄𝒉

𝒖𝒃𝒂𝒕𝒄𝒉

𝑨

𝑩

𝒎

𝑼𝒃𝒂𝒕𝒄𝒉

𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝑴𝒌

𝑴𝒕
𝒗

𝑷𝒃𝒂𝒕𝒄𝒉

𝑴𝒕−𝟏
𝒗𝑴𝒕+𝟏

𝒗

𝒆𝒕𝒂𝒕

1

𝒗𝒃𝒂𝒕𝒄𝒉

𝑠𝑖𝑔𝑚𝑜𝑖𝑑𝑡𝑎𝑛ℎ

𝒗
𝒗𝒃𝒂𝒕𝒄𝒉

𝑩

𝑙𝑜𝑠𝑠

D

𝑭

MLP

𝑃𝐺

𝒗𝒃𝒂𝒕𝒄𝒉
−

𝑩

sampler

G

𝑬

𝑼𝒃𝒂𝒕𝒄𝒉 𝑽𝒃𝒂𝒕𝒄𝒉

𝑽𝒃𝒂𝒕𝒄𝒉
−

1D Conv

𝒘𝒎

𝑽𝒃𝒂𝒕𝒄𝒉

Figure 2 The architecture of MB-NMRN, which computes mini-batch of user-item inter-

actions in parallel

4. 1 Market based memory update strategy

Instead of updating value memory per user-item interac-

tion by the most recent item, we utilize a one-dimensional

convolutional layer (conv1D) to aggregate item vectors from

a mini-batch to form a market vector, which represents the

recent trends of the market. Then we update the value mem-

ory with this market vector per mini-batch. Our method can

accelerate the training efficiency and balance the static and

dynamic interests.

Figure 2 illustrates the structure of MB-NMRN. In this

figure, ubatch denotes a batch of users (i.e., a mini-batch

of users) and vbatch denotes a batch of items. Then, MB-

NMRN obtains the matrix of this batch of items Vbatch by

multiplying vbatch with item embedding matrix B and the

matrix of this batch of items Ubatch by multiplying ubatch

with user embedding matrix A. V−
batch denotes a batch of

candidate negative item lists and m denotes a market vector,

which is calculated as follows:

m = bc + conv1D
(
wc,V

batch
)

(15)

where bc and wc are defined as the bias and weight vectors

of conv1D, respectively. Besides, an attention of the mar-

ket, denoted by wm, is calculated from an attention matrix

Wbatch, which is composed of a mini-batch of item atten-

tions. The equation of wm is described below:

wm = bc + conv1D
(
wc,W

batch
)

(16)

In our case, a market vector m and a market attention

wm are calculated by the same conv1D layer. This is be-

cause utilizing the same conv1D ensures that a specific item

vector and its attention vector are matched (i.e., an item,

which has a large weight, makes its attention also has a large

weight). Then, the value memory matrix Mv
t is updated by

the erasing and adding steps described above.

Similar to Equations 8, 9, 10, and 11, the following equa-

tions show the process of updatingMv
t by our proposed strat-

egy:

M̃v
t+1(i) = Mv

t (i) ◦ [I− wm(i)et]

et = Sigmoid (Wem+ be)

at = Tanh (Wam+ ba)

Mv
t+1(i) = M̃v

t+1(i) + wm(i)at

(17)

Our proposed strategy enables the updating frequency of the

value memory to be adjustable by changing the mini-batch

size.

4. 2 A naive pairwise Hinge-loss

Deep neural networks (DNN) generally utilize mini-

batches (i.e., a set of data points) to train themselves in par-

allel. However, existing MemNNs [9,10,18] lose this parallel

training structure because of locally updating their memory

per data point. Therefore, they are computationally ineffi-

cient.

To address this drawback, we combine the mini-batch

memory update strategy and a naive pairwise Hinge-loss

L. The mini-batch memory update strategy makes all the

users within one mini-batch use the same memory to calcu-

late their proxy preference vectors. And the naive pairwise

Hinge-loss only samples one negative item for a user, which

makes the parallel framework of discriminator simpler. Due

to this, our modified memory network based discriminator

can keep matrix parallel computation as well as other DNN

architectures. The naive pairwise Hinge-loss L is calculated

as follows:

L =
∑

(ubatch,vbatch)∈S

v−
batch

∼V−
u

[m+ d(ubatch,vbatch)

− d
(
ubatch,v−

batch

)
]+

(18)

The difference between Equations 18 and 5 is that in Equa-

tion 18, we do not calculate wu,v and leave the negative item

sampling procedure to the generator, because sampling more

than one negative item for one user complicates the design

of parallel model and have no contribution to the perfor-

mance empirically. Compared with existing MemNNs, our

proposed strategy has higher computational efficiency. This

is because we update the memory by mini-batches and train

a set of data points in parallel.

5. Experiment

In this section, we describe the details of our experiments.

We first introduce the setting of our experiments. Then,

we present the recommendation performances and computa-

tional efficiencies of the evaluation methods.

5. 1 Experimental Settings

Dataset. We adopt a dataset from a real-world online e-

commerce platform that provides items and services (e.g.

home electronics, make-ups, and travel services). This

dataset includes users’ purchase records from 2017-05-11 to

2017-06-11. We divide purchase records into three parts:

2017-05-11 to 2017-6-09 as training set, 2017-06-10 as val-

idation set, 2017-06-11 as testing set. For new users and

items which have no interaction information in the training

set, we delete these new users and items from validation and

testing sets. The details of the three data sets are summa-

Table 1 Statistics of the dataset set

Dataset #interactions #users #items Sparsity(%)

Training set 88,267 7,121 163,959 99.974

Validation set 1,382 553 1,773 99.768

Test set 1,551 499 1,944 99.749

Table 2 Hyper-parameter setting

Hyper parameters value

Dimension of user and item vector 32

Dimension of memory slot (both key and value) 64

Maximum number of negative items sampled for one user 100

Safety margin size 5

Mini-batch size 2048

rized in Table 1.

Evaluation Criteria The evaluation metrics that we adopt

are Hits@k and Recall@k.

Hits@k is widely applied in recommender systems fields

[9, 23, 24, 25]. After generating recommendation lists of

users by the method that we mentioned in Section 3, each

user-item interaction record (u, v) in the test set (Dtest) is

checked. For a specific user u, if she has interacted with an

item v during the testing phase and v in his recommenda-

tion lists, we obtain a hit, otherwise, we obtain a miss. The

Hits@k is calculated as follows:

Hits@k =
#hit@k

|Dtest| (19)

where |Dtest| is the number of interactions in the test set and

#hit@k is the number of hits within test set.

Recall@k is also widely adopted in recommender systems

area [26,27,28,29]. The Recall@k for one user is defined as:

Recall @k =
of true items in the top-k list

the total # of the true items
(20)

where the true items mean the items that a specific user has

interaction record during test phase. We average Recall@k

among users in the test set.

Evaluation methods. To investigate the effectiveness of

our proposed method, we prepared the following methods.

• NMRN [9]. This is a state-of-art recommender sys-

tem, which captures both users’ long-term stable preferences

and short-term dynamic interests. Moreover, NMRN is the

first method that utilizes generative model-based sampler to

generate informative negative items.

• MB-NMRN. This is our proposed method.

Hyper-parameter Settings. All evaluation methods were

implemented based on PyTorch（注1）. MB-NMRN achieves its

best performance with the hyper-parameters show in Table

2. The optimizer is Adam [30], and the learning rate is 0.001.

（注1）：https://pytorch.org

0 20 40 60 80 100
k

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Hi
ts
@
k

MB-NMRN
NMRN

Figure 3 Hits@k of NMRN and MB-NMRN

0 20 40 60 80 100
k

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Re
ca
ll@

k

MB-NMRN
NMRN

Figure 4 Recall@k of NMRN and MB-NMRN

We utilized a conv1D layer that has only 1 neural to com-

pare the computational efficiency of MB-NMRN and NMRN.

Other parameters are randomly initialized from a Gaussian

distribution N (0, 0.012). For determining the best hyper-

parameters, we tuned hyper-parameters based on the valida-

tion set. Instead of randomly sampling mini-batch user-item

interactions from training set, which is applied in [9], we

generated mini-batch in order of time strictly, to mimic the

pattern of real-world online e-commerce platform.

5. 2 Experimental Results

In this section, we report the recommendation perfor-

mances and computational efficiencies of the evaluation

methods.

Recommendation performance. Figures 3 and 4 show

the results of Hits@k and Recall@k of the evaluation meth-

ods with k from 1 to 100, respectively. As Figures 3 and 4

show, MB-NMRN outperforms NMRN, in particular when

k is smaller than 20. These results illustrate that compared

with NMRN, MB-NMRN can better capture the changes of

the market. Compared with directly using the most recent

item to represent the changes of trends, the market vectors

generated by MB-NMRN is more adaptive.

Computational efficiency. In this experiment, we test

mini-batch size of [256, 512, 1024, 2048]. To avoid the in-

256 512 1024 2048
Mini-batch size

0

100

200

300

400

500

600

700

Ru
nn

in
g
tim

e
(m

in
ut
e)

MB-NMRN
NMRN

Figure 5 Running time of NMRN and MB-NMRN

fluence of generator, we sample negative items uniformly at

random for discriminator. Figure 5 shows the computational

efficiency of NMRN and MB-NMRN. The vertical axis of this

figure is running time until the discriminator loss of valida-

tion set is convergent, and the horizontal axis is mini-batch

size. As Figure 5 shows, MB-NMRN outperforms NMRN in

terms of computational efficiency.

6. Conclusion

In this study, we designed a market-based memory update

strategy for NMRN. This strategy applies a conv1D layer

to aggregate a mini-batch of items to form a market vector,

and adopt this market vector to update the value memory of

NMRN per mini-batch. Our strategy enables NMRN to ad-

just its memory update frequency. Besides, MB-NMRN can

be trained by a mini-batch of user-item interactions in par-

allel. Our experimental results show that MB-NMRN out-

performs NMRN in terms of recommendation performance

and computational efficiency.

Acknowledgment

This research is partially supported by JST CREST Grant

Number J181401085.

References

[1] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learn-

ing based recommender system: A survey and new perspec-

tives. ACM CSUR, 52(1):5, 2019.

[2] Carlos A Gomez-Uribe and Neil Hunt. The netflix recom-

mender system: Algorithms, business value, and innovation.

ACM TMIS, 6(4):13, 2016.

[3] James Davidson, Benjamin Liebald, Junning Liu, Palash

Nandy, Taylor Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He,

Mike Lambert, Blake Livingston, et al. The youtube video

recommendation system. In RecSys, pages 293–296, 2010.

[4] Zheng Liu, Xing Xie, and Lei Chen. Context-aware aca-

demic collaborator recommendation. In KDD, pages 1870–

1879, 2018.

[5] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix fac-

torization techniques for recommender systems. Computer,

(8):30–37, 2009.

[6] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J

Smola, and How Jing. Recurrent recommender networks.

In WSDM, pages 495–503, 2017.

[7] Balázs Hidasi, Alexandros Karatzoglou, Linas Bal-

trunas, and Domonkos Tikk. Session-based recommen-

dations with recurrent neural networks. arXiv preprint

arXiv:1511.06939, 2015.

[8] Zhi Li, Hongke Zhao, Qi Liu, Zhenya Huang, Tao Mei, and

Enhong Chen. Learning from history and present: Next-

item recommendation via discriminatively exploiting user

behaviors. In KDD, pages 1734–1743, 2018.

[9] Qinyong Wang, Hongzhi Yin, Zhiting Hu, Defu Lian, Hao

Wang, and Zi Huang. Neural memory streaming recom-

mender networks with adversarial training. In KDD, pages

2467–2475, 2018.

[10] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein

Karimi, Antoine Bordes, and Jason Weston. Key-value

memory networks for directly reading documents. arXiv

preprint arXiv:1606.03126, 2016.

[11] Dominic Masters and Carlo Luschi. Revisiting small

batch training for deep neural networks. arXiv preprint

arXiv:1804.07612, 2018.

[12] Andriy Mnih and Ruslan R Salakhutdinov. Probabilistic

matrix factorization. In NIPS, pages 1257–1264, 2008.

[13] Dietmar Jannach and Malte Ludewig. When recurrent neu-

ral networks meet the neighborhood for session-based rec-

ommendation. In RecSys, pages 306–310, 2017.

[14] How Jing and Alexander J Smola. Neural survival recom-

mender. In WSDM, pages 515–524, 2017.

[15] Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang.

Stamp: short-term attention/memory priority model for

session-based recommendation. In KDD, pages 1831–1839,

2018.

[16] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing

machines. arXiv preprint arXiv:1410.5401, 2014.

[17] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer,

James Bradbury, Ishaan Gulrajani, Victor Zhong, Romain

Paulus, and Richard Socher. Ask me anything: Dynamic

memory networks for natural language processing. In ICML,

pages 1378–1387, 2016.

[18] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory

networks. arXiv preprint arXiv:1410.3916, 2014.

[19] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.

End-to-end memory networks. In NIPS, pages 2440–2448,

2015.

[20] Mikael Henaff, Jason Weston, Arthur Szlam, Antoine Bor-

des, and Yann LeCun. Tracking the world state with re-

current entity networks. arXiv preprint arXiv:1612.03969,

2016.

[21] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,

and Yoshua Bengio. Generative adversarial nets. In NIPS,

pages 2672–2680, 2014.

[22] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin,

Serge Belongie, and Deborah Estrin. Collaborative metric

learning. In WWW, pages 193–201, 2017.

[23] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Per-

formance of recommender algorithms on top-n recommen-

dation tasks. In Recsys, pages 39–46, 2010.

[24] Bo Hu and Martin Ester. Spatial topic modeling in online

social media for location recommendation. In Recsys, pages

25–32, 2013.

[25] Weiqing Wang, Hongzhi Yin, Ling Chen, Yizhou Sun,

Shazia Sadiq, and Xiaofang Zhou. Geo-sage: A geographical

sparse additive generative model for spatial item recommen-

dation. In KDD, pages 1255–1264, 2015.

[26] Ting Chen and Yizhou Sun. Task-guided and path-

augmented heterogeneous network embedding for author

identification. In WSDM, pages 295–304, 2017.

[27] Chong Wang and David M Blei. Collaborative topic mod-

eling for recommending scientific articles. In KDD, pages

448–456, 2011.

[28] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collabora-

tive deep learning for recommender systems. In KDD, pages

1235–1244, 2015.

[29] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie,

and Wei-Ying Ma. Collaborative knowledge base embed-

ding for recommender systems. In KDD, pages 353–362,

2016.

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

