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Abstract Quantum annealing is easier to realize compared with universal gate quantum computing, and there are

already commercialized quantum annealers, such as D-Wave 2000. Quantum annealing can efficiently solve com-

binatorial optimization problems. However, to expand the applications of quantum annealing, some studies have

begun to focus on how to use quantum annealing for other problems such as machine learning algorithm. We have

developed a support vector machine algorithm that solves multiclass classification problems on a quantum annealer.

We evaluated our method on three-class synthetic data and a benchmark dataset (IRIS). The results show that our

method can classify multiclass data at a precision comparable to that of classical implementations.

Key words Ising model, quantum annealing, support vector machine (SVM), machine learning

1 Introduction

With the end of Moore’s Law, it has become difficult for

traditional silicon-based computers to significantly improve

their computing performance. However, a new generation of

computers such as quantum computers is beginning to pros-

per. Both universal gate model quantum computing [1] and

quantum annealing [2] may be able to improve computing

performance in the future. Quantum annealing is specialized

for combinatorial optimization problems [3], and it is easier

to realize compared with universal gate quantum computing.

There are already some commercialized quantum annealers,

such as D-Wave 2000 [4], and quantum-inspired annealers,

such as the Fujitsu Digital Annealer (DA) [5].

To expand the applications of quantum annealing, some

studies have begun to focus on how to use quantum annealing

for other problems such as binary classification [6] and other

machine learning problems [8–11]. Some studies [12,13] pro-

posed binary quantum support vector machines SVMs, i.e.,

quantum versions of a famous machine learning method, and

there are more multiclass classification problems than binary

ones. In this paper, we propose a multiclass classification

SVM algorithm that can be used on a quantum annealer.

Our main idea is to compare the energy values obtained by

quantum annealing between multiple binary classifiers to find

the largest margin between each class. We evaluated our

method using three-class synthetic data and a benchmark

dataset (IRIS [14]) on a quantum annealer and using simu-

lated annealing [15]. The results show that our method can

classify multiclass data at a precision comparable to classical

implementations.

This paper is organized as follows. Section 2 introduces

the background of quantum annealers and binary classifica-

tion algorithms for classical and quantum SVM. In Section

3, we introduce our multiclass classification algorithm. Sec-

tion 4 describes the results of using the proposed method in

experiments on synthetic data and a benchmark dataset. We

conclude this paper in Section 5.

2 Preliminaries

Here, we start by briefly introducing quantum annealing

and the classical SVM. Then we introduce the quantum SVM

algorithm for binary classification.

2 1 Quantum Annealing

Quantum annealing (QA) is a metaheuristic for finding the

global minimum of a given objective function over a given set

of candidate solutions, by a process using quantum fluctu-

ations. QA-based computers are called quantum annealers.

QA has also led to the development of quantum-inspired an-

nealers that use classical algorithms to imitate quantum fluc-

tuations. Both types of annealer use the same problem for-

mulation, either an Ising model [16, 17] or quadratic uncon-

strained binary optimization (QUBO) [18]. Thus, an algo-

rithm running on a quantum-inspired annealing machine can

be directly applied to a quantum annealer. In this study, we

used QUBO to express the optimization problem. A QUBO

problem can be represented as one of minimizing an energy

function,



E =
∑
i<=j

aiQijaj (1)

where ai ∈ {0, 1} are the binary variables of the optimiza-

tion problem and Qij is the QUBO weight matrix, which is

an upper-triangular matrix of real numbers. We use quan-

tum annealers or quantum-inspired annealing machines to

solve the QUBO and obtain ai, which is the solution to the

optimization problem.

2 2 The classical SVM

Support vector machines [19] are the most popular classifi-

cation algorithm in machine learning. The basic principle of

SVM is to find a hyperplane which separates the dataset into

two classes. The aim of an SVM algorithm is to maximize

the margin between data points and the hyperplane. When

the dataset is not linearly separable, kernel tricks [20,21] are

used. A kernel trick projects the data points into a feature

space that is linearly separable by hyperplanes.

Training an SVM is equivalent to solving a quadratic pro-

gramming (QP) problem [20]

minimize E =
1

2

N∑
n

N∑
m

αnαmtntmk(xn, xm)

−
∑
n

αn (2)

subject to 0 <= αn <= C (3)

and
∑
n

αntn = 0 (4)

where N is the number of points in the dataset, xn ∈ Rd is a

point in a d-dimensional space dataset, tn = ±1 is the target

label assigned to xn, αn ∈ R denotes the members of a set

of N coefficients, C is a regularization parameter, and k(·, ·)
is the kernel function.

The coefficients αn are determined using SVM; they define

a (d− 1)-dimensional hyperplane that can separates Rd into

two regions corresponding to the predicted class label. The

hyperplane is determined by the points xn corresponding to

αn |= 0, which is called the support vector of the SVM.

There are several kernels that are often used in the kernel

trick. We use a Gaussian kernel (also known as a radial basis

function kernel or rbf kernel). It is defined by

rbf(xn, xm) = e−γ∥xn−xm∥2 (5)

where the hyperparameter γ > 0 is usually determined in

a calibration procedure prior to the training phase. In the

following sections, we use cSVM(C, γ) to denote the classical

SVM defined by Eqs. (2)-(4).

2 3 Binary classification quantum SVM

As a quantum annealer or quantum-inspired annealing ma-

chine can only produce discrete binary solutions in the form

of a QUBO (Eq. (1)), we need to encode real numbers to bi-

nary values. The previous study [12] encodes αn as follows:

αn =

K−1∑
k=0

BkaKn+k (6)

where aKn+k ∈ {0, 1} are binary variables whose value is

obtained by a quantum annealer, K is the number of binary

variables used to encode αn, and B is the encoding base.

They obtained good results for B = 2 or B = 10 and a small

K.

By using Eq. (6), the QP problem in Eqs. (2)-(4) can be

encoded to

E =
1

2

∑
n,m,k,j

aKn+kaKm+jB
k+jtntmk(xn, xm)

−
∑
n,k

BkaKn+k + ξ(
∑
n,k

BkaKn+ktn)
2 (7)

=

N−1∑
n,m=0

K−1∑
k,j=0

aKn+kQ̃Kn+j,Km+jaKm+j (8)

where the multiplier ξ is a squared penalty term, and Q̃ is a

KN ×KN matrix:

Q̃Kn+j,Km+j =
1

2
Bk+jtntm(k(xn, xm) + ξ)

− δnmδkjB
k (9)

Since the QUBO formulation requires an upper-triangular

matrix. Qij = Q̃ij + Q̃ji for i < j and Qii = Q̃ii. The

two constraints in Eqs. (3) and (4) are also included in the

encoded energy function (Eqs. (7)-(8)). Since the maximum

for αn is given by

C =

K−1∑
k=0

Bk (10)

the constraint αn >= 0 in Eq. (3) is automatically included

in Eqs. (7)-(8). The constraint
∑

n antn = 0 in Eq. (4) is

also included in constraint term ξ(
∑

nk B
kaKn+ktn)

2 in Eq.

(7). The coefficient ξ guarantees this term to be greater than

or equal to zero. When
∑

nk B
kaKn+ktn |= 0, the energy of

QUBO will increase. However, because QA is an algorithm

that finds the lowest energy of all the candidate solutions,

this term will be restricted to zero through QA.

When αn are obtained by using QA, we get the decision

boundary through

f(x) =

N∑
n

αntnk(xn, x) + b, (11)

Here,
∑N

n antn = 0 mathematically corresponds to an opti-

mal bias b in the decision function Eq. (11). A reasonable

choice of b is given by [20]

b =

∑N
n αn(C − αn)[tn −

∑N
m αmtmk(xm, xn)]∑N

n αn(C − αn)
. (12)



The previous study [12] showed that ξ = 0 suffices to get

a reasonable result, and that ξ > 0 produces equally good

results.

In the following sections, we refer to the quantum SVM

defined by Eq. (8) as qSVM.

3 qSVM for Multi-class classification

SVM is fundamentally a binary classifier. However, there

are many multiclass problems in real applications. Two ap-

proaches are commonly used to make binary SVM recognize

multiclass data: one-versus-the-rest [24] and one-versus-one.

In this section, we first introduce the main idea of our

method; we then define the problems and show how to solve

them on quantum annealers.

3 1 Main idea

Our main idea is to compare the energy values (Eq. (8)) ob-

tained by quantum annealing between multiple binary clas-

sifiers to find the largest margin between each class. This

enables our multiclass classification qSVM method, which

follows the one-versus-the-rest or one-versus-one approach,

to separate data into multiple classes when the result is un-

certain. In the next two sections, we describe how to con-

struct a multiclass qSVM classifier from a binary qSVM and

then how to realize one on a quantum annealer or quantum-

inspired annealing machine.

3 2 Multiclass classification problems

The one-versus-the-rest method is usually implemented

using a “winner-takes-all” strategy. Assuming we have Nc

classes, this strategy constructs Nc separate binary classi-

fiers in which the nth
c classifier ync(x) is trained using the

data points of class Cnc as positive examples and the data

points of the remaining Nc − 1 classes as negative examples.

Here, Nc is the number of classes. According to [22], this

strategy makes predictions in accordance with

y(x) = max
nc

ync(x). (13)

However, this may lead to inconsistent results wherein one

input datum is assigned to multiple classes.

The other approach, one-versus-one, is usually imple-

mented using a “max-wins” voting (MWV) strategy. It con-

structs Nc(Nc−1)/2 binary classifiers for all possible pairs of

distinct classes; then, the classes which have the most votes

are the prediction result. The classifier Cij uses examples

from class Ci as positive examples and examples from class

Cj as negative ones. However, this approach also faces a

problem that there may be classes with the same number of

votes.

3 3 Multiclass Classification qSVM

Using the two multiclass approaches mentioned above, we

can use multiple binary qSVMs to construct a multiclass

qSVM. However, both the one-versus-the-rest approach and

the one-versus-one approach face certain problems. In par-

ticular, when the obtained results are inconsistent or the

number of votes is the same, it is difficult to judge which

class the data belongs to. Therefore, our multiclass classi-

fication qSVM uses the one-versus-the-rest and one-versus-

one strategies to build a multiclass qSVM and then uses

the minimum energy obtained from a quantum annealer or

quantum-inspired annealing machine to find the separating

hyperplane between classes. When the results are inconsis-

tent or the number of votes is the same, we compare the en-

ergies of each binary classifier and assign the uncertain data

to a certain class. This approach aims to find the largest

margin between each class, and this strategy is also the ba-

sic idea of SVM. Take account of this method, we can achieve

a multiclass classification qSVM on a quantum annealer or

quantum-inspired annealing machine.

To show how to find the largest margin, we will start with

a simple two-class classification linear model. The model is

y(x) = wTϕ(x) + b (14)

where ϕ(x) denotes a fixed feature-space transformation, and

we make the bias parameter b explicit. The task of finding

the largest margin in this model can be simplified to maxi-

mizing ∥ w ∥−1; that is, we can solve the optimization prob-

lem by

argmin
w,b

1

2
∥ w ∥2 (15)

which is derived in [22]. To solve this constrained optimiza-

tion problem, we use Lagrange multipliers αn ≧ 0 and con-

struct the Lagrangian function [22],

L(w, b, a) =
1

2
∥ w ∥2 −

N∑
n=1

αn{tn(wTϕ(xn) + b)− 1}

(16)

Then using the Karush-Kuhn-Tucker (KKT) conditions to

solve for the Lagrangian function, we get

max
α

W (α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαj⟨xi, xj⟩

(17)

subject to 0 <= αi <= C, i = 1, ...,m (18)

and

m∑
i=1

αiyi = 0 (19)

where we write W (α) as a function of α, and ⟨xi, xj⟩ is a

kernel function when using the kernel trick. In this paper,

we use the rbf kernel (Eq. (5)).

According to the derivation above, to find the largest mar-

gin between classes, we only need to solve Eq. (17)-(19).



From Eqs. (7)-(8), we know that the margin will be largest

when the energy in Eq. (7) is at a minimum. Thus, the min-

imum energy obtained by the quantum annealer can assign

uncertain results to a certain class. We use this strategy

to decide the prediction label in the prediction time of our

method. When using the one-versus-the-rest approach, we

choose the label of positive examples of the classifier with

the lowest energy as the prediction result for the inconsis-

tent result.

tpredict = targminECnc
, nc ∈ {1, ..., Nc} (20)

where ECnc
is the energy of the classifier Cnc . Moreover,

when using one-versus-one approach, we choose the label

with the smallest average energy of the classifier as the re-

sult when the number of votes are the same.

tpredict = targmin avgECnc
, nc ∈ {1, ..., Nc(Nc − 1)/2} (21)

4 Experiments

To verify the binary qSVM concept presented in the pre-

vious study and the characteristics of the hyperparameters,

we first conducted a two-class experiment using synthetic

data. Then, we evaluated our method on three-class syn-

thetic data and a well-known benchmark dataset (IRIS). The

existing quantum annealers and quantum-inspired annealing

machines will offer different results owing to their having

different random initial values due to quantum randomness.

Therefore, we performed several experiments under the same

conditions on each dataset. In addition, all the experiments

on qSVM were conducted on the quantum-inspired annealing

machine (DA) described in Section 2.

4 1 Two-class synthetic data

First, to prove the concept of the binary qSVM, we

evaluated the binary qSVM on a small set of two-

dimensional synthetic data, which was generated using scikit-

learn.make.moon (sklearn) [26]. Fig. 1 is the recognition re-

sult optimized by DA, and Fig. 2 is the result using cSVM.

In the figures, color is used to distinguish classes, and the

edges between the colored areas indicate the decision bound-

aries. The results in Fig. 1 show that the synthetic data

cannot be separated when γ = 0.1 and γ = 1. On the other

hand, qSVM recognized the synthetic data with 100% accu-

racy when γ = 10. γ is a hyperparameter of the rbf kernel,

and it defines how far the influence of a single training exam-

ple reaches, with low values meaning“ far”and high values

meaning“ close”. When γ is small, the curvature of the

decision boundary is very low, and thus, the decision region

is very broad and the data may be underfitted. When γ is

high, the curvature of the decision boundary is high, and the

data are easily overfitted. Therefore, we can see that γ works

Figure 1 Recognition results of qSVM using DA. Results in the

same column have the same hyperparameters, which

represent three separate results optimized by quantum

annealing for the same parameters. The results on the

same line are for different γ.

Figure 2 Recognition results of cSVM for different C and γ.

in qSVM as it does in cSVM.

4 2 Three-class synthetic data

To prove that our algorithm is accurate, we tested it on

linearly inseparable three-class synthetic data. The dataset

consisted of N = 120 points, and each class had 40 points.

The data were generated according to



(a) cSVM

(b) qSVM on DA (c) qSVM on SA

Figure 3 Recognition results of three-class synthetic data for

cSVM (C = 10, γ = 5), qSVM (γ = 5, ξ = 0, B =

10,K = 3) on DA and SA.

Table 1 Accuracy of different methods on three-class synthetic

dataset

cSVM qSVM on DA qSVM on SA

1 1.000 0.975 0.975

xn = rn

(
cosϕn

sinϕn

)
+

(
sxn

syn

)
, (22)

where rn = 2, 1, and 0.15 when tn = 0, 1, and 2, respectively.

ϕn was linearly spaced on [0, 2π) for each class, and sxn and

syn were drawn from a normal distribution with mean 0 and

standard deviation 0.2.

We experimented with this dataset on cSVM and qSVM.

The visualized results and accuracies are in Fig. 3 and Table

1. Each color represents one class, and the boundaries of the

colored areas are the decision boundaries of SVM. Fig. 3(a)

shows the recognition results of cSVM. It shows that cSVM

separated the data into three classes and had high generaliza-

tion ability. Fig. 3(b) and Fig. 3(c) are experimental results

of qSVM on DA and SA, respectively. From these figures,

we can see that DA and SA obtain similar solutions with low

energy. (The parameters of DA were automatically tuned

using a FUJITSU web API). qSVM also separates the data

into three classes with high generalization performance, but

with slightly lower accuracy. Both cSVM and qSVM used

the same γ value. The results of the experiments described

in the previous subsection also indicated that the γ of qSVM

is more sensitive than that of cSVM; consequently, qSVM is

more likely to underfit the data.

4 3 Iris dataset

Next, we evaluated our method on a famous benchmark

Figure 4 Recognition results of qSVM (B=10, K=3) using DA.

Results in the same column have the same hyperpa-

rameters; they are three separate results optimized by

quantum annealing for the same parameters. The re-

sults on the same line are for different values of γ.

Figure 5 Recognition results using cSVM for different C and γ.

dataset, IRIS, which is a multivariate data set having three

classes. We chose two variates as training data, as two vari-

ates are easy to visualize. Fig. 4 shows the recognition re-

sults optimized by DA, and Fig. 5 show those optimized

using cSVM for comparison. Table 2 lists the accuracies ob-

tained from DA for different parameter values.



Table 2 Accuracy of proposed method for

different hyperparameters on IRIS dataset

No. γ = 0.1 γ = 1 γ = 10

1 0.853 0.947 0.813

2 0.713 0.900 0.847

3 0.807 0.667 0.900

The colored areas in Fig. 4 and Fig. 5 distinguish the three

classes, and their edges are the decision boundaries of SVM.

In Fig. 4, when γ = 0.1, the decision boundaries are broad

and underfit the data. When γ = 10, the decision boundaries

fit the data better, but tend to overfit them. When γ = 1,

qSVM separates the data well with high generalization per-

formance.

The accuracy of our method is shown in Table 2. It can be

seen that when the parameters are appropriate, our method

has 94.7% accuracy (γ = 1, ξ = 20), which is means it can

separate multiclass data successfully. Since the parameters

were tuned simply, higher accuracy can be expected if more

sophisticated parameter tuning is done.

5 Conclusions

We proposed a quantum SVM algorithm that solves mul-

ticlass classification problems and can be run on a quantum

annealer. It based on the one-versus-the-rest and one-versus-

one approaches. We use the minimum energy obtained from

the quantum annealer to find the largest margin between

classes. This enables us to assign uncertain answers to a

certain class when using multiclass one-versus-the-rest and

one-versus-one approaches. We evaluated our method on

synthetic data and a well-known benchmark dataset, IRIS,

using the Fujitsu Digital Annealer (DA), a quantum-inspired

annealing machine. (As well, the algorithm can directly be

used on a quantum annealer.) The results show that our

method can classify multiclass data at a precision compara-

ble to that of classical implementations. When the hyperpa-

rameter is set properly, our method can recognize data with

high generalization performance.

In the future, we will add a constraint term to adjust the

hyperparameter C. In a classical SVM, C is the penalty

for misclassifying a data point. In qSVM, it is already in-

cluded in the encoding formulation and is a fixed value. We

can widen the range of applications of multiclass classifica-

tion using qSVM by increasing the adjustment range of the

hyperparameter.
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