
DEIM2021 I21-1

Phishing URL Detection
using Information-rich Domain and Path Features

Eint Sandi Aung†a) Hayato YAMANA†b)

†Department of Computer Science and Communication Engineering, Graduate School of Fundamental
Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.

E-mail : a) eintsandiaung@toki.waseda.jp, b) yamana@info.waseda.ac.jp
Abstract Malicious or phishing detection has been drawing a serious concern since the early 21st century

because of tremendous electronic transfer accesses such as financial transitions and identity theft via online
services. Amongst various detection schemes, including content-based approach, uniform resource locator
(URL)-based detection is widely used not only for its comparable performance w.r.t accuracy but also for its
adaptability to any other forms (for example, embedding URLs in spam messages or emails). In phishing URL
detection, feature engineering is a crucial yet challenging way to improve performance. Manually-generated
features are risky and highly dependent on datasets. Thus, recently, researchers tend to focus on information-
based features, which extracts features based on the URL’s texts. To put it simply, researchers adapt the neural
network to extract characters/words which are rich in indicating valuable information in the URLs. Our research
focuses on information-based features applying a neural network-based model in which we consider both
domain-based and path-based features. Then, we analyze and compare our results with previous papers and
summarize opinions for a better detection system.

Keyword Malicious URL, Phishing, Security, Domain-level, Path-level

1. Introduction
Cyber phishing has been a global concern for decades
because of resulting loss in hundreds of millions of dollars
in 2020, according to Keepnet’s latest phishing statistics1.
Phishing attacks not only target at stealing personal
information such as financial details but also intrude into
organizations via installing malicious programs such as
ransomware. Keepnetlabs reported 540 data breaches in
the USA in the first half of 2020. According to Verizon’s
2020 data breaches investigation report, 22 percent of
data breaches include phishing attacks. Keepnet
mentioned that 1 in 8 employees share information to
phishing websites, and over 60,000 phishing websites are
reported in 2020 March alone.

Meanwhile, APWG’s 2020 statistics 2 reported that the
number of phishing attacks has increased since March. It
said that most phishing attacks are activated by a small
number of registrars, domain registries, and host
providers. Surprisingly, 80 percent of phishing sites have
SSL encryption enabled to deceive victims. In the Q3
report of APWG, 40 percent of all SSL certificates that
phishers used were issued by “Let’s Encrypt.” Moreover,
recently phishers in Brazil avoid domain names that can

1 Keepnet: https://www.keepnetlabs.com

2 APWG: https://apwg.org

attract attention, which is different from their previous
behaviors of drawing victims’ focus by mimicking or
compelling catchwords. Since APWG has been measuring
more precisely to analyze how phishers are constructing
phishing URLs, it reveals a significant improvement of
unique phishing sites since March 2020. In the Q3 report,
the number of unique phishing websites detected (approx.
572000) is over 1.5 times that of unique phishing emails
(approx. 367300).

The statistics mentioned above showed that phishing
URLs are now receiving growing attention recently.
However, analyzing URLs has not been an easy research
area because most URLs have randomly generated
information yet challenging research. Thus, our research
focuses on detecting phishing URLs from which we try to
gather as much information as we can to dig in for
information-rich features.

We organize this paper into six different sections: Section
2 describes the background of phishing w.r.t different
detection schemes. In Section 3, we analyze the
importance of features in the detection area and discuss
the nature of features in detail. It is followed by Section 4
of our approach in which we explain different embedding
techniques applied in this research. Then, Section 5

DEIM2021 I21-1

describes detailed step-by-step implementations from
scratch. We describe different evaluation results and
opinions illustrating comparative performance in Section
6. Eventually, Section 7 concludes our paper with its future
work.

2. Related Work
Phishing attacks steal users’ personal information via
online services. Those attacks come in more sophisticated
forms; however, to put the detection schemes simply, we
can organize malicious or phishing detection into two
types, content-oriented and URL-oriented. The content-
oriented approach analyzes the content of a webpage
[13,40], such as text, visual similarities, CSS, and javascript
styles, while URL-oriented schemes mainly focus on the
structure or string patterns of URLs and its features[33,35],
such as blacklist[36,38] or white-list URLs[37,39]. There
are also hybrid approaches[11,31,32] that comprise
features from both of them. Although both schemes are
complicated in their ways, URL-oriented detection has an
advantage of comparable performance to content while
maintaining less security risks, the concern in content-
based detection (Figure 1.1). Furthermore, a URL-based
scheme brings an early detection for newly generated
phishing websites.

Figure 1.1. Phishing Attacks and Detection Schemes

Moreover, we can further categorize detection

techniques into machine learning-based (ML) and neural
network-based (NN) detection. We introduce a brief
description of ML and NN-based detection techniques in
Sections 2.1 and 2.2.

2.1. Machine Learning based Detections
Researchers and data analysts have been applying machine
learning for a few decades because of its comparable
performance in terms of accuracy and precision in data
analysis. In addition, ML-based algorithms have more
interpretability because of their simplicity to trace how
the data shaped and worked inside. In this section, we
brief some of the recent research for a better explanation.
B.Sabir [1] in 2020 addressed the security vulnerabilities
of ML-based phishing URL detection(MLPU) systems and
proposed an evasion attack framework to the systems.
They reproduced 41 MLPU systems and simulated an

attack on them. They emphasized their work for a better
future detection system.

D. Sahoo [3,30] published comprehensive survey papers
on malicious URL detection using machine learning in 2019
and 2017. The papers reviewed noble contributions and
addressed various perspectives in terms of feature
representation and algorithm designs.

O. Sahingoz [6] in 2019 proposed a real-time anti-
phishing system using NLP features that are independent
of third-party services. This work had the advantage of
language independence with real-time execution.

C.Wu [7] in 2019 proposed a detection system focused on
URLs, and in this work, they considered URLs in the
content of a webpage combined with those in the source
code of the webpage. They applied Levenshtein distance
to calculate URL strings' similarity between the main URL
and its contained URLs.

K.Chiew [10] in 2019 contributed a new feature selection
framework, named as the Hybrid Ensemble Feature
Selection (HEFS). They utilized a cumulative distribution
function gradient algorithm to produce primary feature
subsets, later being fed to output secondary feature
subsets that are then used to select baseline features by
using perturbation ensemble.

Similar ML-based detection works can be found in
[8][9][13][14][15][16][17][18][19][33].

2.2. Neural Network based Detections
In the current days, the neural network has acquired a
spotlight in data science as its deep learning to achieve
accurate evaluation outcomes. Although most of its
application area still exists in image/computer-vision
related works, research on text analysis such as
summarization and classification has been growing over
time. In this section, we describe some of the previous
researchers’ work.

F.Tajaddodianfar [2] proposed a novel deep learning
architecture called Texception. In this work, they
considered both character-level and word-level
information from the incoming URL. It has the advantage
of not relying on manually generated features and multiple
parallel convolutional layers to expand deeper and wider.

Y.Haung [4] in October 2019 proposed a capsule-based
neural network for phishing URL detection. They
implemented two capsule layers: primary capsule layer
and classification capsule layer. In the primary layer, they
extracted accurate features from shallow features
generated by the former convolution layer. Classification
capsule layer used a dynamic routing algorithm and

DEIM2021 I21-1

squashing function and averaged outputs from all
branches.

Y.Haung [5] in August 2019 proposed a deep learning
based phishing URL detection called PhishingNet. In this
paper, CNN for character-level feature extraction and
attention-based hierarchical RNN for word-level feature
extraction is performed separately and then fused them
into CNN. They improved generalization ability on newly
emerged URLs.
Similar works can be found in [20][21][22][23][24][25]
[26][27][28].

3. Importance of Features
Handling raw data has never been an easy task in a URL-
based scheme. To better outperforming accuracy, a system
needs a large set of features. Moreover, defining features
needs experts’ knowledge. Extracting features from URLs
takes an enormous amount of time.

ML-based detection mainly consists of various
sophisticated features ranging from text-focused (e.g.,
similarities or relations between words) to URL
characteristics-focused (e.g., lexical features such as IP
address, redirection, Bag of Words features, distance-
based features, and third-party features) features[1].
Meanwhile, NN-based detection analyzes either features
used in ML or raw character- and/or word-level features[2],
and it needs to transform raw data into integer-coded
character- or word-vector representation. Transforming
raw data to meaningful information, called feature vector,
is challenging because of the randomness of
characters/words in URL.

3.1. Manually Generated Features
Manually generated features are fixed features where
phishers can bypass by a small change of URL structures.
These features are the ones we implement in our previous
work [11]. To define an effective feature to the system, it
needs not only knowledge of featuring engineering experts
but also enough durability to make sure phishers cannot
easily deceive. Furthermore, its major weakness is that the
performance of the detection highly relies on them. One
feature could easily drop the detection rate as a noisy
feature.

3.2. Information-rich Features
We call the features extracted from raw URLs directly
Information-rich features, such as words/characters,
which we transform integer-encoded vector
representation. Simply, we extract words or characters
from the URL text and consider them as features
themselves, as shown in Figure 3.1. Such features are

neither risky to detection rate like manually generated
features. We define such features as information-rich
features as they contain useful information (e.g.,
alphanumeric characters and meaningful words)

https fs yama info waseda ac jp users Sign_in

Figure 3.1. Example of URL words after tokenization

4. Our Approach
We perform our system shown in Figure 4.1. As we aim to
overcome the bottleneck of manually generated features,
we target information-rich features by extracting
meaningful words from them.

In the model, we perform two different embeddings
layers with different tokenization techniques as shown in
Section 4.2. To our best knowledge, this is our new way of
adapting two embedding techniques in phishing URL
detection. We apply LSTM after dropout layers from each
embedding and then concatenate the outputs into one
vector and performed batch-normalization followed by
dense layer.

4.1. Features
In our preprocessing stage, we split URLs into two parts:

domain and path, because we assume that URL patterns in
the domain are less random than those in the path. The
domain part consists of the URL components until the end
of the domain name, whereas the path part includes the
rest of the URLs until the non-alphanumeric character “?.”
We encode them into character or word level and then
feed them into the model.

Figure 4.1. Our System

4.1.1. Domain based Features
In the domain part, we transform URLs into a set of words
by tokenizing because meaningful words/brand names can
mostly be found in the domain part, as shown in Figure 4.2.

DEIM2021 I21-1

Here, the extracted/tokenized features are the word
features mixed with non-alphanumeric characters.

Figure 4.2. Domain based Features

4.1.2. Path based Features
In the path part, the characters appear more randomly and
less meaningful than those in the domain part shown in
Figure 4.3. Thus, we adopt character level features in the
path part and split them into characters.

Figure 4.3. Path based Features

4.2. Embedding Techniques
We apply two embedding techniques, such as Keras
embedding and ELMo embedding, to train two LSTM
models in our work. Then, we prepare our input vectors
for the models.

4.2.1. Keras Embedding
Keras provides an embedding layer to be used on text data
in the neural network. As it needs integer-encoded input
data, we encode words whose frequencies are larger than
1 with unique IDs and later save them in a vocabulary
dictionary in ascending order of their frequencies. We
reserve <UNKNOWN> as for those with frequency is 1. This
assumption is because we might encounter unknown
words in the validation and testing phase.

The embedding layer is initialized with random weights
to learn all the words in model training. We specify the
embedding layer as the network's first hidden layer with
three arguments: input_dim=length of vocabulary
dictionary, output_dim=32, and input_length=200. As for
the input vector, we tokenize domain-level words and
path-level characters as shown in 5.1.1.

4.2.2. ELMo Embedding
ELMo is a deep contextualized word representation model.
It uses a deep bi-directional LSTM to create word
representation instead of a vocabulary dictionary. ELMo
analyzes words in their context and is character-based
embedding, which forms word representation even if
there are out-of-vocabulary words. Instead of a dictionary
look-up, ELMo creates representation vectors while

passing texts through the model.
We load a fully trained model tensorflow hub for our

embedding. We apply ELMo embedding with output_dim
of 1024. In our input sequence of texts, we consider
domain level words and preprocess them with word
segmentation described in 5.1.2.

4.3. Dataset
We mainly adopted a legitimate dataset from DMOZ (later
known as Curl) and PhishTank collected in our previous
work [11]. We prepared our dataset for two cases:
imbalanced and balanced training. The imbalanced dataset
has the ratio of phishing to legitimate as approx. 1:6. We
split our dataset into 80 percent of training and 20 percent
of testing as shown in Figure 4.4.

Table 4.1. Dataset details
Dataset Size Type

Legitimate Phishing
D1 15,000 15,000 Balanced
D2 99,383 15,056 Imbalanced

Figure 4.4. Dataset Partition

For the balanced dataset, as we do not want to choose

15,000 legitimate and 15,000 phishing manually from the
whole dataset, we apply dataframe.sample() at the
beginning of the preprocessing and then perform splitting
in the same way as in the imbalanced dataset.

5. Implementation
We implement our work using tensorflow 2 on the machine
with GPU GeForce GTX 1060.

We initially performed preprocessing of raw URLs and
constructed a vocabulary dictionary for Keras Embedding.
We adapted two tokenization techniques as shown in
Section 5.1.1. and 5.1.2.

5.1. Preprocessing
We need to transform raw data into integer-encoded
vectors before adapting to the model. Thus, we performed
the preprocessing stage. Firstly, we discard the rest of the
URL parts after “?” because the query values (key, value
pairs) are randomly generated and could bring noise. Then,
we tokenize them depending on parts and encode domain-

DEIM2021 I21-1

level words or path-level characters. Finally, we feed them
into two embedding layers separately as shown in Figure
5.1.

5.1.1. Tokenization in Keras Embedding
We adopt the Keras embedding in which we input a vector
of concatenated words (of the domain) and character
sequences (of the path). In this embedding, we tokenize
domain level words in the same way as previous research
[1]. However, we consider non-alphanumeric characters as
mentioned in the previous section.

Figure 5.1. Preprocessing Stage

We transform the input URL, for example,

https://www.mywaseda-setting-html.00webhostapp.com/
kambok/...ml, into a vector as shown in Figure 5.2.

Figure 5.2. Tokenizing in Keras Embedding

5.1.2. Tokenization in ELMo Embedding
In ELMo embedding, we utilize the “wordsegment” library,
which is based on Google Trillion Word Corpus and
frequently used in the natural language processing (NLP)
area, to extract/tokenize meaningful words from URLs. For
example, a URL https://mywaseda-setting-html.00web
hostapp.com is split into the sequence of words shown in
Figure 5.3.

Figure 5.3. Tokenizing in ELMo Embedding

5.2. Model
We design our model with two input layers as shown in
Figure 5.4: (1) input to Keras embedding and (2) input to
ELMo embedding. We input a concatenated input vector
(domain-level words and path-level character) into Keras
embedding layer while the domain-level words alone to
ELMo embedding layer. The embedding layer is then
followed by the dropout layer with a value of 0.2. We
adapt LSTMs with a recurrent dropout of 0.2 and later
dense them before the concatenating layer. We then
perform batch-normalization and again dense into 128
output size, followed by output layer.

Figure 5.4. Model Architecture

6. Experimental Evaluation
This section describes the model setup, parameters, and
analysis of experimental results in details as follows.

6.1. Parameter Setting
We used StratifiedKFold from the sklearn library for
training. Our parameter setting is described in Table 6.1.

Table 6.1. Model Parameter
Parameter Value

Training: Testing Split 8:2
Epoch Size 10,20
Batch Size 128

Learning Rate 0.001
Loss Binary_crossentropy

Activation Relu, sigmoid
Keras Embedding

Dimension
(200,32)

ELMo Embgedding
Dimension

(None,1024)

DEIM2021 I21-1

6.2. Evaluation Result
Due to the page limitation, we show the results with
epoch=10. We train our model on both balanced (D1) and
imbalanced (D2) datasets.

Figure 6.1 shows the evaluation performance of the
balanced dataset (D1).

We measured four evaluation metrics (accuracy,
precision, recall, and loss) in which we achieve 93 percent
and a loss of 27 phases in the testing phase.

Figure 6.1. Evaluation Result for D1

We then measured the distribution of evaluation metrics

on D1 dataset using boxplot as shown in Figure 6.2 to
analyze how the metric scores diverge from average scores.

Figure 6.2. Distribution of Evaluation Metrics of the

balanced dataset (D1)

When we adapt our approach in the imbalanced dataset
(D2), we measure mean accuracy, precision, recall, and
loss as similar to D1, and we achieve approx. 97 percent of
accuracy with a loss of 11 percent in the testing phase as
shown in Figure 6.3. Compared to the evaluation result of

D1, the more the data size is growing, the more we
optimize the loss because of the growing vocabulary
dictionary size. We again measured the distribution on
evaluation scores and illustrated as boxplot in Figure 6.4
and analyze that the larger the dataset size, the lesser the
deviation.

Figure 6.3. Evaluation Result for D2

Figure 6.4. Distribution of Evaluation Metrics of the

imbalanced dataset (D2)

6.3. Comparison with Baseline
We compared our accuracy with the baseline model, a
previous research work (URLNet[27]). We choose delimit-
mode that delimits URL by special characters and treat
each special characters as words, which is similar to our
work.

We also choose embedding-mode as character and word
CNN in their work. Then, we adapted our dataset, and
eventually, we measure accuracy and compare it with our
result as shown in Figure 6.5. We outperform approx. 6%
and 1% of accuracy in D1 and D2, respectively.

0.
93
32
6

0.
92
68

0.
94
21

0.
30
55

T E S T I N G

Accuracy Precision Recall Loss

0.
96

81

0.
90

52

0.
84

69

0.
11

7

T E S T I N G

Accuracy Precision Recall Loss

DEIM2021 I21-1

Figure 6.5. Comparison of Accuracy

7. Conclusion
In conclusion, we approached phishing URL detection with
two types of segmentation (traditional segmentation for
Keras embedding and meaningful NLP-based word
segmentation for ELMo embedding).

We applied our proposed two-level features such as
domain-level word and path-level character features to
adapt in Keras embedding.

We then designed concatenated layers from the outputs
of two embedding layers. We ran our program 10 fold
cross-validation and averaged mean evaluation metrics,
which we achieved approx. 93 percent and 97 percent in
D1 and D2 datasets, respectively.

We finally compared our evaluation in terms of accuracy
with URLNet by selecting parameters similar to our work
and improved approx. 5% in D1 and 1% in D2 using our
dataset.

As for the future work, we need to minimize loss since
learning fewer vocabulary in the dataset has been the
cause of high loss.

Acknowledgement
A part of this research was funded by Grants-in-Aid for
Scientific Research(KAKENHI) Program (17KT0085).

References
[1] B. Sabir, M. Babar, and R. Gaire, “An evasion attack against

ML-based phishing URL detection,” in ArXiv,
vol.abs/2005.08454v1, 2020.

DOI:10.1145/1122445.1122456.

[2] F. Tajaddodianfar, J. W. Stokes, and A. Gururajan,
“ Texception: a character/word-level deep learning model
for phishing URL detection,” Proc. ICASSP 2020, 2020 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp.2857-2861, 2020.

DOI:10.1109/ICASSP40776.2020.9053670.

[3] D. Sahoo, C. Liu, and S. C. H. Hoi, “Malicious URL detection
using machine learning : a survey,” In ArXiv,

vol.abs/1701.07179v3, 2019.

[4] Y. Huang, J. Qin, and W. Wen, “Phishing URL detection via
capsule-based neural network,” Proc. 13th International
Conference on Anti-counterfeiting, Security, and
Identification, pp.22-26, 2019.

DOI:10.1109/ICASID.2019.8925000.

[5] Y. Huang, Q. Yang, J. Qin, and W. Wen, “Phishing URL
detection via CNN and attention-based hierarchical RNN,”
Proc. 18 th International Conference on Trust, Security and
Privacy in Computing and Communications and 13 th
International Conference on Big Data Science and
Engineering, pp.112-119, 2019.

DOI:10.1109/TrustCom/BigDataSE.2019.0024

[6] O. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine
learning based phishing detection from URLs,” in Journal of
Expert Systems with Applications, vol.117, pp.345-357,
2019. DOI:10.1016/j.eswa.2018.09.029

[7] C. Wu, C. Kuo, and C. Yang, “A phishing detection system
based on machine learning,” Proc. International
Conference on Intell igent Computing and its Emerging
Applications (ICEA 2019), pp.28-32, 2019.

[8] R. Patgiri, H. Katari, R. Kumar, and D. Sharma, “Empirical
study on malicious URL detection using machine learning,”
Proc. 15 th International Conference on Distributed
Computing and Internet Technology, pp.380-388, 2019.
DOI:10.1007/978-3-030-05366-6-31

[9] M. T. Suleman, and S. M. Awan, “Optimization of URL-based
phishing websites detection through genetic algorithms,”
in Journal of Automatic Control and Computer Sciences,
vol.53, no.4, pp.333-341, 2019.

DOI:10.3103/s0146411619040102

[10] K. Chiew, C. Tan, K. Wong, and K. Yong, “A new hybrid
ensemble feature selection framework for machine
learning-based phishing detection system,” in Journal of
Information Sciences, vol.484, pp.153-166, 2019.

DOI:10.1016/j.ins.2019.01.064

[11] E. Aung, and H. Yamana, “URL-based phishing detection
using the entropy of non-alphanumeric characters,” Proc.
21 st International Conference on Information Integration
and Web-Based Applications & Services, pp.385-392, 2019.
DOI: 10.1145/3366030.3366064

[12] A. Oest, Y. Safei, A. Doupe, G. J. Ahn, B. Wardman, G.
Warner, “Inside a phisher ’s mind: understanding the anti-
phishing eco system through phishing kit analysis,” Proc.
2018 APWG Symposium on Electronic Crime Research
(eCrime), 2018.

[13] H. Shirazi, B. Bezawada, and I. Ray, “Know thy doma1n
name: unbiased phishing detection using domain name
based features,” Proc. the 23 rd ACM on Symposium on
Access Control models and Technologies, pp.69-75, 2018.
DOI:10.1145/3205977.3205992

[14] C. Liu, L. Wang, B. Lang, and Y. Zhou, “Finding effective
classifier for malicious URL detection” Proc. 2nd
International Conference on Management Engineering,
Software Engineering and Service Sciences, pp.240-244,
2018. DOI:10.1145/3180374.3181352

[15] W. Daffa, O. Bamasag, and A. AlMansour, “A survey on spam
URLs detection in Twitter,” Proc. 1 st International
Conference on Computer Applications and Information
Security, pp.1-6, 2018. DOI:10.1109/CAIS.2018.8441975

[16] H. Yuan, X. Chen, Y. Li, Z. Yang, and W. Liu, “Detecting
phishing websites and targets based on URLs and webpage
links,” Proc. 24 th International Conference on Pattern
Recognition, pp.3669-3674, 2018.

0.9333 0.9681

0.8743

0.9549

0%

20%

40%

60%

80%

100%

D 1 D 2

AC
CU

RA
CY

D1 = BALANCED D2 = IMBALANCED

Our

URLNet

DEIM2021 I21-1

DOI:10.1109/ICPR.2018.8546262

[17] D. Patil, and J. Patil, “Malicious URL detection using
decision tree classifiers and majority voting technique,” in
Journal of Cybernetics and Information Technologies,
vol.18, no.1, pp.11-29, 2018. DOI:10.2478/cait-2018-0002

[18] S. Parekh, D. Parikh, S. Kotak, and S. Sankhe, “A new
method for detection of phishing websites: URL detection,”
Proc. 2nd International Conference on Inventive
Communication and Computational Technologies, pp.949-
952, 2018. DOI:10.1109/ICICCT.2018.8473085

[19] A. Jain, and B. Gupta, “A machine learning based approach
for phishing detection using hyperlinks information,” in
Journal of Ambient Intell igence and Humanized Computing,
vol.10, pp.2015-2028, 2018.

DOI:10.1007/s12652-018-0798-z

[20] I . Arnaldo, A. Arun, and S. Kyathanahalli , “Acquire, adapt
and anticipate: continuous learning to block malicious
domains,” Proc. International Conference on Big Data, 2018.
DOI:10.1109/BigData.2018.8622197

[21] M. Trivesan, and I. Drago, “Robust URL classification with
generative adversarial networks,” in Journal of ACM
SIGMETRICS Performance Evaluation Review, vol.46, no.3,
pp. 143-146, 2018. DOI:10.1145/3308897.3308959

[22] A. Anand, K. Gorde, J. R. A. Moniz, N. Park, T. Chakraboty,
and B. Chu, “Phishing URL detection with oversampling
based on text generative adversarial networks,” Proc.
International Conference on Big Data, pp.1168-1177, 2018.

DOI:10.1109/BigData.2018.8622547

[23] S. Shivangi, P. Debnath, K. Sajeevan, and D. Annapurna,
“Chrome extension for malicious URLs detection in social
media applications using artificial neural networks and
long short term memory networks,” Proc. 18 th International
Conferences on Advances in Computing, Communications
and Informatics, pp.1993-1997, 2018.

DOI:10.1109/ICACCI.2018.8554647

[24] A. Vazhayil, R. Vinayakumar, and K. P. Soman, “Comparative
study of the detection of malicious URLs using shallow and
deep networks,” Proc. 9 th International Conference on
Computing, Communication and Networking Technologies,
pp.1-6, July, 2018. DOI:10.1109/ICCCNT.2018.8494159

[25] A. C. Bahnsen, I. Torroledo, D. Camacho, and S. Vil legas,
“DeepPhish: simulating malicious AI,” in APWG Symposium
on Electronic Crime Research, 2018.

[26] Y. Shi, G. Chen, and J. Li, “Malicious domain name detection
based on extreme machine learning,” in Journal of Neural
Processing Letters, vol.48, pp.1347-1357, 2018.
DOI:10.1007/s11063-017-9666-7

[27] H. Le, Q. Pham, D. Sahoo, and S. C. H. Hoi, “URLNet:
learning a URL representation with deep learning for
malicious URL detection,” in ArXiv, vol.abs/1802.03162,
2017.

[28] A. C. Bahnsen, and E. C. Bohorquez, “Classifying phishing
URLs using recurrent neural networks,” in APWG
Symposium on Electronic Crime Research, pp.1-8, 2017.
DOI:10.1109/ECRIME.2017.7945048

[29] D. Sahoo, C. Liu, and S. C. H. Hoi, “Malicious URL detection
using machine learning : a survey,” in ArXiv,
vol.abs/1701.07179v1, 2017.

[30] A. Hodzic, J. Kevric, “Comparison of machine learning
techniques in phishing website classification,” Proc.
International Conference on Economic and Social Studies
(ICESoS’16), vol.3, pp.249-256, 2016.

[31] M. Dadkhah, S. Shamshirband, A. Wahab, “A hybrid
approach for phishing web site detection,” in the Electronic

Library, vol.34, no.6, pp.927-944, 2016.

[32] M. N. Feroz, S. Mengel, “Phishing URL detection using URL
ranking,” Proc. 2015 IEEE International Congress on Big
Data, pp.635-638, 2015.

[33] S. Marchal, J. Francois, R. State, and T. Engel, “PhishStorm:
detecting phishing with streaming analytics,” in IEEE
Transactions on Network and Service Management, vol.11,
no.4, pp.458-471, 2014.

[34] E. Sorio, A. Bartoli, E. Medvet, “Detection of hidden
fraudulent URLs within trusted sites using lexical features,”
Proc. 2013 International Conference on Availabil ity,
Reliabil ity and Security, 2013.

[35] P. Prakash, M. Kumar, R. R. Kompella, and M. Gupta,
“Phishnet: predictive blacklisting to detect phishing
attacks,” Proc. IEEE INFOCOM, 2010, pp.1-5, 2010.

[36] Y. Cao, W. Han, and Y. Le, “Anti-phishing based on
automated individual white-list,” Proc. the 4 th ACM
Workshop on Digital Identity Management, pp.51–60, 2008.

[37] M. Sharifi and S. H. Siadati, “A phishing sites blacklist
generator,” Proc. IEEE/ACS International Conference on
Computer Systems and Applications, pp. 840-843, 2008.

[38] J. Kang and D. Lee, “Advanced white-list approach for
preventing access to phishing sites,” Proc. International
Conference on Convergence Information Technology (ICCIT
2007), pp.491-496, 2007.

[39] L. Wenyin, G. Huang, L. Xiao Yue, Z. Min, X. Deng,
“Detection of phishing webpages based on visual similarity,”
in Special interest tracks and posters of the 14th
International Conference on World Wide Web, pp. 1060-
1061, 2005.

