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Abstract  Malicious or phishing detection has been drawing a serious concern since the early 21st century 

because of tremendous electronic transfer accesses such as financial transitions and identity theft via online 
services. Amongst various detection schemes, including content-based approach, uniform resource locator 
(URL)-based detection is widely used not only for its comparable performance w.r.t accuracy but also for its 
adaptability to any other forms (for example, embedding URLs in spam messages or emails). In phishing URL 
detection, feature engineering is a crucial yet challenging way to improve performance. Manually-generated 
features are risky and highly dependent on datasets. Thus, recently, researchers tend to focus on information-
based features, which extracts features based on the URL’s texts. To put it simply, researchers adapt the neural 
network to extract characters/words which are rich in indicating valuable information in the URLs. Our research 
focuses on information-based features applying a neural network-based model in which we consider both 
domain-based and path-based features. Then, we analyze and compare our results with previous papers and 
summarize opinions for a better detection system. 
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1. Introduction 
Cyber phishing has been a global concern for decades 
because of resulting loss in hundreds of millions of dollars 
in 2020, according to Keepnet’s latest phishing statistics1. 
Phishing attacks not only target at stealing personal 
information such as financial details but also intrude into 
organizations via installing malicious programs such as 
ransomware. Keepnetlabs reported 540 data breaches in 
the USA in the first half of 2020. According to Verizon’s 
2020 data breaches investigation report, 22 percent of 
data breaches include phishing attacks. Keepnet 
mentioned that 1 in 8 employees share information to 
phishing websites, and over 60,000 phishing websites are 
reported in 2020 March alone.  

Meanwhile, APWG’s 2020 statistics 2  reported that the 
number of phishing attacks has increased since March. It 
said that most phishing attacks are activated by a small 
number of registrars, domain registries, and host 
providers. Surprisingly, 80 percent of phishing sites have 
SSL encryption enabled to deceive victims. In the Q3 
report of APWG, 40 percent of all SSL certificates that  
phishers used were issued by “Let’s Encrypt.” Moreover, 
recently phishers in Brazil avoid domain names that can 

 
1  Keepnet:  https://www.keepnetlabs.com 

2  APWG: https://apwg.org 

attract attention, which is different from their previous 
behaviors of drawing victims’ focus by mimicking or 
compelling catchwords. Since APWG has been measuring 
more precisely to analyze how phishers are constructing 
phishing URLs, it reveals a significant improvement of 
unique phishing sites since March 2020. In the Q3 report, 
the number of unique phishing websites detected (approx. 
572000) is over 1.5 times that of unique phishing emails 
(approx. 367300). 

The statistics mentioned above showed that phishing 
URLs are now receiving growing attention recently. 
However, analyzing URLs has not been an easy research 
area because most URLs have randomly generated 
information yet challenging research. Thus, our research 
focuses on detecting phishing URLs from which we try to 
gather as much information as we can to dig in for 
information-rich features. 

We organize this paper into six different sections: Section 
2 describes the background of phishing w.r.t different 
detection schemes. In Section 3, we analyze the 
importance of features in the detection area and discuss 
the nature of features in detail. It is followed by Section 4 
of our approach in which we explain different embedding 
techniques applied in this research. Then, Section 5 
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describes detailed step-by-step implementations from 
scratch. We describe different evaluation results and 
opinions illustrating comparative performance in Section 
6. Eventually, Section 7 concludes our paper with its future 
work. 

2. Related Work 
Phishing attacks steal users’ personal information via 
online services. Those attacks come in more sophisticated 
forms; however, to put the detection schemes simply, we 
can organize malicious or phishing detection into two 
types, content-oriented and URL-oriented. The content-
oriented approach analyzes the content of a webpage 
[13,40], such as text, visual similarities, CSS, and javascript 
styles, while URL-oriented schemes mainly focus on the 
structure or string patterns of URLs and its features[33,35], 
such as blacklist[36,38] or white-list URLs[37,39]. There 
are also hybrid approaches[11,31,32] that comprise 
features from both of them. Although both schemes are 
complicated in their ways, URL-oriented detection has an 
advantage of comparable performance to content while 
maintaining less security risks, the concern in content-
based detection (Figure 1.1). Furthermore, a URL-based 
scheme brings an early detection for newly generated 
phishing websites. 

 
Figure 1.1. Phishing Attacks and Detection Schemes 

 
Moreover, we can further categorize detection 

techniques into machine learning-based (ML) and neural 
network-based (NN) detection. We introduce a brief 
description of ML and NN-based detection techniques in 
Sections 2.1 and 2.2. 

2.1. Machine Learning based Detections  
Researchers and data analysts have been applying machine 
learning for a few decades because of its comparable 
performance in terms of accuracy and precision in data 
analysis. In addition, ML-based algorithms have more 
interpretability because of their simplicity to trace how 
the data shaped and worked inside. In this section, we 
brief some of the recent research for a better explanation.  
B.Sabir [1] in 2020 addressed the security vulnerabilities 
of ML-based phishing URL detection(MLPU) systems and 
proposed an evasion attack framework to the systems. 
They reproduced 41 MLPU systems and simulated an 

attack on them. They emphasized their work for a better 
future detection system. 

D. Sahoo [3,30] published comprehensive survey papers 
on malicious URL detection using machine learning in 2019 
and 2017. The papers reviewed noble contributions and 
addressed various perspectives in terms of feature 
representation and algorithm designs.  

O. Sahingoz [6] in 2019 proposed a real-time anti-
phishing system using NLP features that are independent 
of third-party services. This work had the advantage of 
language independence with real-time execution. 

C.Wu [7] in 2019 proposed a detection system focused on 
URLs, and in this work, they considered URLs in the 
content of a webpage combined with those in the source 
code of the webpage. They applied Levenshtein distance 
to calculate URL strings' similarity between the main URL 
and its contained URLs. 

K.Chiew [10] in 2019 contributed a new feature selection 
framework, named as the Hybrid Ensemble Feature 
Selection (HEFS). They utilized a cumulative distribution 
function gradient algorithm to produce primary feature 
subsets, later being fed to output secondary feature 
subsets that are then used to select baseline features by 
using perturbation ensemble.  

Similar ML-based detection works can be found in 
[8][9][13][14][15][16][17][18][19][33]. 

2.2. Neural Network based Detections  
In the current days, the neural network has acquired a 
spotlight in data science as its deep learning to achieve 
accurate evaluation outcomes. Although most of its 
application area still exists in image/computer-vision 
related works, research on text analysis such as 
summarization and classification has been growing over 
time. In this section, we describe some of the previous 
researchers’ work. 

F.Tajaddodianfar [2] proposed a novel deep learning 
architecture called Texception. In this work, they 
considered both character-level and word-level 
information from the incoming URL. It has the advantage 
of not relying on manually generated features and multiple 
parallel convolutional layers to expand deeper and wider. 

Y.Haung [4] in October 2019 proposed a capsule-based 
neural network for phishing URL detection. They 
implemented two capsule layers: primary capsule layer 
and classification capsule layer. In the primary layer, they 
extracted accurate features from shallow features 
generated by the former convolution layer. Classification 
capsule layer used a dynamic routing algorithm and 
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squashing function and averaged outputs from all 
branches. 

Y.Haung [5] in August 2019 proposed a deep learning 
based phishing URL detection called PhishingNet. In this 
paper, CNN for character-level feature extraction and 
attention-based hierarchical RNN for word-level feature 
extraction is performed separately and then fused them 
into CNN. They improved generalization ability on newly 
emerged URLs. 
Similar works can be found in [20][21][22][23][24][25] 
[26][27][28]. 

3. Importance of Features 
Handling raw data has never been an easy task in a URL-
based scheme. To better outperforming accuracy, a system 
needs a large set of features. Moreover, defining features 
needs experts’ knowledge. Extracting features from URLs 
takes an enormous amount of time. 

ML-based detection mainly consists of various 
sophisticated features ranging from text-focused (e.g., 
similarities or relations between words) to URL 
characteristics-focused (e.g., lexical features such as IP 
address, redirection, Bag of Words features, distance-
based features, and third-party features) features[1]. 
Meanwhile, NN-based detection analyzes either features 
used in ML or raw character- and/or word-level features[2], 
and it needs to transform raw data into integer-coded 
character- or word-vector representation. Transforming 
raw data to meaningful information, called feature vector, 
is challenging because of the randomness of 
characters/words in URL. 

3.1. Manually Generated Features 
Manually generated features are fixed features where 
phishers can bypass by a small change of URL structures. 
These features are the ones we implement in our previous 
work [11]. To define an effective feature to the system, it 
needs not only knowledge of featuring engineering experts 
but also enough durability to make sure phishers cannot 
easily deceive. Furthermore, its major weakness is that the 
performance of the detection highly relies on them. One 
feature could easily drop the detection rate as a noisy 
feature. 

3.2. Information-rich Features 
We call the features extracted from raw URLs directly 
Information-rich features, such as words/characters, 
which we transform integer-encoded vector 
representation. Simply, we extract words or characters 
from the URL text and consider them as features 
themselves, as shown in Figure 3.1. Such features are 

neither risky to detection rate like manually generated 
features. We define such features as information-rich 
features as they contain useful information (e.g., 
alphanumeric characters and meaningful words) 

https fs yama info waseda ac jp users Sign_in 

Figure 3.1. Example of URL words after tokenization 
 

4. Our Approach 
We perform our system shown in Figure 4.1. As we aim to 
overcome the bottleneck of manually generated features, 
we target information-rich features by extracting 
meaningful words from them. 

In the model, we perform two different embeddings 
layers with different tokenization techniques as shown in 
Section 4.2. To our best knowledge, this is our new way of 
adapting two embedding techniques in phishing URL 
detection. We apply LSTM after dropout layers from each 
embedding and then concatenate the outputs into one 
vector and performed batch-normalization followed by 
dense layer. 

4.1. Features 
In our preprocessing stage, we split URLs into two parts: 

domain and path, because we assume that URL patterns in 
the domain are less random than those in the path. The 
domain part consists of the URL components until the end 
of the domain name, whereas the path part includes the 
rest of the URLs until the non-alphanumeric character “?.” 
We encode them into character or word level and then 
feed them into the model.  

 
Figure 4.1. Our System 

 

4.1.1. Domain based Features 
In the domain part, we transform URLs into a set of words 
by tokenizing because meaningful words/brand names can 
mostly be found in the domain part, as shown in Figure 4.2. 
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Here, the extracted/tokenized features are the word 
features mixed with non-alphanumeric characters. 

 

Figure 4.2. Domain based Features 
 

4.1.2. Path based Features 
In the path part, the characters appear more randomly and 
less meaningful than those in the domain part shown in 
Figure 4.3. Thus, we adopt character level features in the 
path part and split them into characters. 

 

Figure 4.3. Path based Features 
 

4.2. Embedding Techniques 
We apply two embedding techniques, such as Keras 
embedding and ELMo embedding, to train two LSTM 
models in our work. Then, we prepare our input vectors 
for the models. 

4.2.1. Keras Embedding 
Keras provides an embedding layer to be used on text data 
in the neural network. As it needs integer-encoded input 
data, we encode words whose frequencies are larger than 
1 with unique IDs and later save them in a vocabulary 
dictionary in ascending order of their frequencies. We 
reserve <UNKNOWN> as for those with frequency is 1. This 
assumption is because we might encounter unknown 
words in the validation and testing phase.  

The embedding layer is initialized with random weights 
to learn all the words in model training. We specify the 
embedding layer as the network's first hidden layer with 
three arguments: input_dim=length of vocabulary 
dictionary, output_dim=32, and input_length=200. As for 
the input vector, we tokenize domain-level words and 
path-level characters as shown in 5.1.1. 

4.2.2. ELMo Embedding 
ELMo is a deep contextualized word representation model. 
It uses a deep bi-directional LSTM to create word 
representation instead of a vocabulary dictionary. ELMo 
analyzes words in their context and is character-based 
embedding, which forms word representation even if 
there are out-of-vocabulary words. Instead of a dictionary 
look-up, ELMo creates representation vectors while 

passing texts through the model.  
We load a fully trained model tensorflow hub for our 

embedding. We apply ELMo embedding with output_dim 
of 1024. In our input sequence of texts, we consider 
domain level words and preprocess them with word 
segmentation described in 5.1.2. 

4.3. Dataset 
We mainly adopted a legitimate dataset from DMOZ (later 
known as Curl) and PhishTank collected in our previous 
work [11]. We prepared our dataset for two cases: 
imbalanced and balanced training. The imbalanced dataset 
has the ratio of phishing to legitimate as approx. 1:6. We 
split our dataset into 80 percent of training and 20 percent 
of testing as shown in Figure 4.4. 

Table 4.1. Dataset details 
Dataset Size Type 

Legitimate Phishing 
D1 15,000 15,000 Balanced 
D2 99,383 15,056 Imbalanced 

 

 
Figure 4.4. Dataset Partition 

 
For the balanced dataset, as we do not want to choose 

15,000 legitimate and 15,000 phishing manually from the 
whole dataset, we apply dataframe.sample() at the 
beginning of the preprocessing and then perform splitting 
in the same way as in the imbalanced dataset. 

5. Implementation 
We implement our work using tensorflow 2 on the machine 
with GPU GeForce GTX 1060. 

We initially performed preprocessing of raw URLs and 
constructed a vocabulary dictionary for Keras Embedding. 
We adapted two tokenization techniques as shown in 
Section 5.1.1. and 5.1.2.   

5.1. Preprocessing 
We need to transform raw data into integer-encoded 
vectors before adapting to the model. Thus, we performed 
the preprocessing stage. Firstly, we discard the rest of the 
URL parts after “?” because the query values (key, value 
pairs) are randomly generated and could bring noise. Then, 
we tokenize them depending on parts and encode domain-
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level words or path-level characters. Finally, we feed them 
into two embedding layers separately as shown in Figure 
5.1. 

5.1.1. Tokenization in Keras Embedding 
We adopt the Keras embedding in which we input a vector 
of concatenated words (of the domain) and character 
sequences (of the path). In this embedding, we tokenize 
domain level words in the same way as previous research 
[1]. However, we consider non-alphanumeric characters as 
mentioned in the previous section. 
 

 
Figure 5.1. Preprocessing Stage 

 
We transform the input URL, for example, 

https://www.mywaseda-setting-html.00webhostapp.com/ 
kambok/...ml, into a vector as shown in Figure 5.2. 

 

Figure 5.2. Tokenizing in Keras Embedding 
 

5.1.2. Tokenization in ELMo Embedding 
In ELMo embedding, we utilize the “wordsegment” library, 
which is based on Google Trillion Word Corpus and 
frequently used in the natural language processing (NLP) 
area, to extract/tokenize meaningful words from URLs. For 
example, a URL https://mywaseda-setting-html.00web 
hostapp.com is split into the sequence of words shown in 
Figure 5.3. 

 

Figure 5.3. Tokenizing in ELMo Embedding 
 

5.2. Model 
We design our model with two input layers as shown in 
Figure 5.4: (1) input to Keras embedding and (2) input to 
ELMo embedding. We input a concatenated input vector 
(domain-level words and path-level character) into Keras 
embedding layer while the domain-level words alone to 
ELMo embedding layer. The embedding layer is then 
followed by the dropout layer with a value of 0.2. We 
adapt LSTMs with a recurrent dropout of 0.2 and later 
dense them before the concatenating layer. We then 
perform batch-normalization and again dense into 128 
output size, followed by output layer. 

 

Figure 5.4. Model Architecture 
 

6. Experimental Evaluation 
This section describes the model setup, parameters, and 
analysis of experimental results in details as follows. 

6.1. Parameter Setting 
We used StratifiedKFold from the sklearn library for 
training. Our parameter setting is described in Table 6.1. 

Table 6.1. Model Parameter 
Parameter Value 

Training: Testing Split 8:2 
Epoch Size 10,20 
Batch Size 128 

Learning Rate 0.001 
Loss Binary_crossentropy 

Activation Relu, sigmoid 
Keras Embedding 

Dimension 
(200,32) 

ELMo Embgedding 
Dimension 

(None,1024) 
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6.2. Evaluation Result 
Due to the page limitation, we show the results with 
epoch=10. We train our model on both balanced (D1) and 
imbalanced (D2) datasets. 

Figure 6.1 shows the evaluation performance of the 
balanced dataset (D1).  

We measured four evaluation metrics (accuracy, 
precision, recall, and loss) in which we achieve 93 percent 
and a loss of 27 phases in the testing phase. 

 

 
Figure 6.1. Evaluation Result for D1 

 
We then measured the distribution of evaluation metrics 

on D1 dataset using boxplot as shown in Figure 6.2 to 
analyze how the metric scores diverge from average scores. 

 
Figure 6.2. Distribution of Evaluation Metrics of the 

balanced dataset (D1) 
 

When we adapt our approach in the imbalanced dataset 
(D2), we measure mean accuracy, precision, recall, and 
loss as similar to D1, and we achieve approx. 97 percent of 
accuracy with a loss of 11 percent in the testing phase as 
shown in Figure 6.3. Compared to the evaluation result of 

D1, the more the data size is growing, the more we 
optimize the loss because of the growing vocabulary 
dictionary size. We again measured the distribution on 
evaluation scores and illustrated as boxplot in Figure 6.4 
and analyze that the larger the dataset size, the lesser the 
deviation. 
 

 
Figure 6.3. Evaluation Result for D2 

 
Figure 6.4. Distribution of Evaluation Metrics of the 

imbalanced dataset (D2) 
 

6.3. Comparison with Baseline 
We compared our accuracy with the baseline model, a 
previous research work (URLNet[27]). We choose delimit-
mode that delimits URL by special characters and treat 
each special characters as words, which is similar to our 
work. 

We also choose embedding-mode as character and word 
CNN in their work. Then, we adapted our dataset, and 
eventually, we measure accuracy and compare it with our 
result as shown in Figure 6.5. We outperform approx. 6% 
and 1% of accuracy in D1 and D2, respectively. 
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Figure 6.5. Comparison of Accuracy 

7. Conclusion 
In conclusion, we approached phishing URL detection with 
two types of segmentation (traditional segmentation for 
Keras embedding and meaningful NLP-based word 
segmentation for ELMo embedding). 

We applied our proposed two-level features such as 
domain-level word and path-level character features to 
adapt in Keras embedding.  

We then designed concatenated layers from the outputs 
of two embedding layers. We ran our program 10 fold 
cross-validation and averaged mean evaluation metrics, 
which we achieved approx. 93 percent and 97 percent in 
D1 and D2 datasets, respectively.  

We finally compared our evaluation in terms of accuracy 
with URLNet by selecting parameters similar to our work 
and improved approx. 5% in D1 and 1% in D2 using our 
dataset. 

As for the future work, we need to minimize loss since 
learning fewer vocabulary in the dataset has been the 
cause of high loss. 
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