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Abstract  This study proposes a representation method of time-series data by considering its high-level semantic features 
to help build interpretable neural networks. This method constructs human cognition features as specific high-level semantic 
information to tackle the issue that cognitions are challenging to apply in representation learning of time series data. Our 
approach can improve the performance of traditional networks and make it possible to use time-series data in a variety of tasks. 
Keyword  Representation Learning, Time Series, High-Level Semantic Features, Neural Network 

 
1. Introduction 

Time series analysis is not a new study, and we have 
been using time series analysis for thousands of years. 
Time series data, such as daily prices of stocks [1], health 
care [2], and weather condition [3], are introductory 
classes of temporal data and have been widely used in a lot 
of applications. 

This brings new challenges to the discovery of 
knowledge from big time series data. For example, in the 
stock market, time series analysis requires experienced 
and competent analysts to analyze the market changes and 
behavioral logic implied behind the extensive, complex, 
and detailed market data. There is widespread interest in 
providing efficient analysis using unlabeled or finitely 
labeled time series data. Consequently, Analysis of time 
series data is a quite important tool that could help us to 
understand how time series data works in our daily life. 
Based on this, several methods are proposed for different 
purpose. Such as indexing, classifying, clustering, and 
summarizing time series data [4, 5]. 

In this paper, we propose to study time series from a 
new angle. Our goal is to understand the hidden patterns 
between the time series data. Thus, instead of classify 
time series data to different groups or predicting the next 
time series value based on the pattern in the most recent 
time window, we focus on discovering the high-level 
semantic in time series data which could help us to 
understand the hidden connection between different 
subsequences of time series.  

Our approach includes the following three subroutines. 
First, we identify the change points of different states in 
time series and create segmentation of time series data. It 
will help us to distinguish the different high-level 

semantic hidden in time series data. Then for each 
segmentation, intrinsic connections between different 
segmentation are learned. And it can be used as the 
encoding vector of high-level semantic features to join the 
input of the representation learning model or be directly 
used in the specific tasks as the extracted features. The 
details are shown in Fig.1. 

 
Fig. 1. Structure of representation learning of 

high-level semantic features. 

A．  State-of-the-art Solutions 
Much work has been done on time series analysis, 

including time series prediction [6], time series 



 

 

classification [7], and similar time series matching [8]. 
Representation learning of time series data has become a 
popular research topic. Most models aim to discover the 
Spatio-temporal dependencies in the data. Time2Graph [9] 
begins from Shapelet [10], which can automatically mine 
time-series subsequences with representative features, and 
constructs graphs for representation learning by analyzing 
the direct relationship between different shapelets. 

Additionally, contrast learning has been introduced into 
this aspect of time series analysis [11]. Unsupervised 
representation learning of unlabeled time-series data is 
achieved by constructing positive and negative data pairs. 
On this basis, triplet loss is further combined with a CNN 
with dilation [12] to tackle long time-series data. This 
approach is fairly easy to implement and only requires 
distinguishing the main features. 

The time series transformer (TST) model [13] is a 
recently proposed representation learning model for 
multivariate time series. This model essentially fills the 
gap in applying the transformer model to the 
representation learning of time series. This model 
achieves better learning performance than supervised 
training methods by introducing a transformer-based 
pre-training model. 

However, not much attempt has been made to use the 
semantic features, especially the high-level semantic 
features of time series data, to understand the hidden 
patterns between the time series data. The high-level 
semantic will help us build interpretable neural networks 
and improve the performance of representation learning of 
time series data. 
B．  High-level Semantic Features 

 

Fig. 2. Time series data of different human 

activities. 

 

The high-level semantic feature is a fundamental notion 
in Computer Vision (CV). High-level semantic features 
are considered the prominent features for the images [14]. 
In other words, high-level semantic features can represent 
an image with the help of object details. These features 
also provide certain semantic information of the objects in 
images. Different hierarchical layers provide various types 
of features in deep learning.  

There is a similar concept in time series data. Real 
world time series also have high-level semantic. Fig.2 
shows a typical example of time-series series data 
captured from a human activities system include a set of 
human movements, e.g., sitting, standing, and walking. We 
can refer to specific patient movements as high-level 
semantic in the time series. Specifically, given a time 
series 𝑇, the goal is to find homogeneous segments, and 
then cluster similar segments to reveal high-level semantic 
features of 𝑇 . The understanding of the high-level 
semantic features offers us a holistic insight into the time 
series. These features can be widely used in other time 
series mining and analysis applications. In this paper, we 
use high-level semantic features to join the representation 
learning of time series data to reveal the hidden patterns 
between the time series data.  

The rest of this paper is organized as follows. We 
introduce some related works in Section 2 and elaborate 
our techniques in Section 3. And Section 4 shows 
experimental results. Finally, we conclude this paper and 
delineate the directions of future work in Section 5. 

 

2. Related work 
Some traditional and basic mathematical methods and 

models, such as ARIMA, have been used for many time 
series tasks, which is concerned with the value changes of 
time series 𝑋!  given observations 𝑋", 𝑋#, ∙∙∙	, 𝑋!$". These 
approaches are designed with a frequent assumption that 
the time series has a certain memory with the past data, 
which means current values are only related to its 
neighboring node values. This results in that these 
approaches only focus on local information of time series 
data, and do not attempt to explain observations using the 
hidden pattern between time series data. Although many 
works focus on discovering certain patterns or regularities 
in time series [15], these patterns may not necessarily be 
regarded as important patterns, in terms of whether they 
can inform us of the latent semantic states. Many mining 
algorithms discover many patterns that are hard to 
interpret, which adds to the complexity of understanding 



 

 

the system instead of helping reduce it.  
Therefore, finding high-level semantic features of time 

series data (i.e., latent semantic states) is one of the core 
subroutines in current time series mining applications. 
However, this task is not trivial. It has two challenges: (1) 
how to determine the correct change points between 
consecutive segments and cluster segments into different 
states (2) how to embed high-level features in time series 
data for representation learning. Fortunately, there are 
several related works focus on these two issues 
respectively.  
A．  Identification of different states 

The first step of discovering high-level semantic 
features of time series data is identification of different 
states. There are three representative approaches under 
this issue.  

pHMM [16] recognize different states by lines with 
different slopes and lengths. Although this is a quite 
simple but effective approach, this is not available to time 
series whose states are not linear. 

AutoPlait [17] distinguishes different states by the mean 
and standard deviation of data values in each state. This 
type of approach makes full use of the statistical 
characteristics of the time series data. However, AutoPlait 
fails to work in situation when these states have similar 
mean and standard deviation values. 

GRAB [18] exploits the similarity between 
subsequences. That is, they define the state as repeated 
subsequences, and the segments which have multiple 
similar subsequences are identical state. GRAB is 
motivated by FLUSS [19], which infers boundaries (or 
change points) between different states based on the 
intuition that the most similar subsequence pairs tend to 
belong to the same state. FLUSS produces a companion 
time series called Arc Curve (AC). Each value of AC is the 
number of arcs that connect the two most similar 
subsequences and spatially cross this point. Intuitively, 
most subsequences will find their nearest neighbor within 
the corresponding segment. Thus the “valley” points in 
AC are likely to be the locations of boundaries between 
different states. 

However, GRAB was proposed to identify different 
states in time series data. The goal of this work is to use 
the high-level semantic features in representation learning 
of time series data. Nevertheless, GRAB offers an 
adaption solution by enriching GRAB with an embedding 
approach.  
B．  Embedding models for time series 

Recently, some algorithms have been proposed with 
certain specific properties of time-series data, thus 
enabling the construction of model inputs using the 
relevant properties described by the time-series data. 
Signal2Vec [20] was the first to use the core idea of 
Word2Vec [21] to embed continuous-type data. First, 
Signal2Vec discretizes the continuous data. Next, the 
discretized data are processed by the skip-gram model to 
vectorize the input time-series data. Subsequently, the 
constructed embedding vectors are used for clustering the 
time-series data. 

Multiple time-series data tasks require manually 
designed features, such as time windows and lag operators, 
which plausibly harm the usefulness and efficiency of 
models for time-series data. Time2Vec [22] was proposed 
to transform dynamic data into dimensional static 
embedding vectors and reduce the effort required for data 
pre-processing. This allows Time2Vec to capture the 
periodic features of time-series data. However, owing to 
the lack of a corresponding pre-training task, the 
embedding vectors learned by Time2Vec are easily 
overfitted to the training set, thus resulting in poor 
performance on the test set. In addition, this approach is 
not suitable for time-series data with insignificant periods, 
such as stock price data. 

In addition, as the research on graph structure has 
intensified, some studies [23] have also been devoted to 
enhancing the effectiveness of existing models by 
applying graph mining methods using graphs constructed 
from the target time-series data. The earliest research 
using this approach can be traced back to the study on 
complex networks in 2008 [24]. The latest research [25] 
captures both, local and global features of time-series data 
by constructing sub-graphs to provide a more 
comprehensive representation. However, the significance 
of this embedding method has only been proven for 
conventional models, while there is no relevant existing 
research on deep learning models. 

Based on these embedding models, high-level semantic 
features can also be regarded as the embedding vectors 
(like the part of position encoding in Transformer 
architecture) and be used in representation learning.  

 

3. Methodology 
To find high-level semantic features of time series, we 

propose a Frequency Decomposition-Based approach. It 
includes the following three subroutines. Fig.1 illustrates 
the details.  



 

 

Time Series Segmentation: For a given time series	 𝑇, 
we use FLUSS to identify change points of different states 
in time series and create segmentation of time series data.  

FLUSS takes both a time series	 𝑇 and	a	user	provided	
subsequence	 length	 in	 as	 input,	 and	 outputs	 an	 AC	
vector	 of	 length	 n,	 where	 at	 each	 index	 i	 contains	 the	
number	 of	 “arcs”	 that	 cross	 over	 i.	 We	 define	 an	 “arc”	
as	 follows.	 The	 i%& 	 entry	 in	 the	 vector	 contains	 a	
positive	integer	 j,	which	indicates	the	nearest	neighbor	
location.	 So,	 for	 the	 𝑖!' entry,	 containing	 a	 positive	
integer	 j,	 the	 nearest	 neighbor	 for	 the	 time	 series	
subsequence	 beginning	 at	 index	 i	 is	 the	 time	 series	
subsequence	 beginning	 at	 index	 j.	 We	 can	 visualize	
each	entry	pair	(i,j)	as	an	arc	drawn	from	location	i	to	j.	
The	spatial	 layout	of	 the	arcs	along	with	the	number	of	
“arc”	 crossing	 over	 of	 each	 index	 i	 is	 summarized	 by	
the	 Arc	 Curve.	 Specifically,	 index	 i	 of	 the	 Arc	 Curve	
contains	 a	 non-negative	 integer	 indicating	 the	 number	
of	arcs	that	cross	over	i.	

Graph Generation: After the identification of change 
points of different states in time series, we would create 
several segmentations of time series data. And each 
segmentation could represent a certain state of time series. 
Motivated by GRAB, we construct a graph representation 
of the original time series where each vertex corresponds 
to a segmentation. The weight of each edge is designed to 
reveal the similarity between each segmentation and 
others. It can also be regarded as the representation of the 
likelihood that two segmentations are under the same 
hidden state. With such graph generation, our approach 
could construct the specific graph structure of each time 
series. And because of the ability to establish the hidden 
relationship between different segmentation, the 
high-level semantic features of each time series could also 
be revealed.  

Concretely, based on the time series segmentation, we 
construct an undirected weighted graph 𝐺 = (𝑉, 𝐸), where 
each vertex corresponds to a segmentation and the weight 
of edge connecting two segmentations is the similarity 
between them.  

A time series 𝑇 = (𝑡", 𝑡#, ·	·	·, 𝑡() is an ordered sequence 
of real-valued numbers 𝑡) ∈ 	ℝ, 𝑛 = |𝑇| is the length of 𝑇. 
A subsequence 𝑇),+ = (𝑡) , 𝑡),", ·	·	·, 𝑡),+$")(1 ≤ 𝑖𝑛 − 𝑙 + 1) 
denotes the continuous sequence of length 𝑙 starting from 
the 𝑖!' position in 𝑇. 

For each segmentation 𝑆-, we define a vector 𝜔(. The 
length of 𝜔(  is 𝑚 , the number of segmentation 
subsequences. The 𝑖!'  entry in 𝜔(  indicates the 

similarity between 𝑆-  and 𝑆) . The similarity could be 
calculated as the Arc Curve number in FLUSS algorithm.  

High-level Semantic Encoding: Based on the graph 
generated in last step, a new issue is how to extract the 
graph features of time series data. The most 
straightforward method is Graph Convolutional Networks 
(GCN) [26].  

Recently, many papers focused on generalizing neural 
networks to work on arbitrarily structured graphs [27-31].  
Some methods of them, like graph-based and kernel-based 
techniques, lead the hot topic and excited achievements in 
such domain. 

Graph Convolutional Networks (GCN) [26] is a widely 
used architecture for most graph neural network models. 
Motivated by Convolutional Neural Network (CNN), GCN 
is specially designed for graph structure. For these models, 
the goal is then to learn a function of signals or features 
on a graph 𝐺 = (𝑉, 𝐸), which takes as input: A feature 
description 𝑥) for every node 𝑖; summarized in a 𝑁 ×𝐷 
feature matrix 𝑋, where 𝑁 represent number of nodes, 
and 𝐷 is number of input features. And a representative 
description of the graph structure in matrix form; typically, 
in the form of an adjacency matrix 𝐴 (or some function 
thereof).  

Based on this description, every neural network layer 
can then be written as a non-linear function.  

𝐻(+,") = 𝑓d𝐻(+), 𝐴e (1) 
where 𝐻(0) = 𝑋  and 𝐻(1) = 𝑍 . 𝐿  being the number of 
layers. The specific models then differ only in how𝑓(·) is 
chosen and parameterized.  

In this paper, we chose GCN to extract the features of 
generated graph of time series. And the output of GCN can 
be regarded as the high-level semantic features used in 
many tasks of time series data.  

After we calculate the features of generated graph based 
on time series, it can be used as the part of the input of the 
TST model, like position encoding in Transformer 
architecture. Different segmentations with high-level 
semantic features will have a different distribution of 
frequency decomposition. In this way, we can add 
high-level semantic features to input vectors of TST. On 
the other hand, it can also be used directly as the extracted 
features in tasks of time series data like classification and.  

 

4. Experiment 
In this section, we tested the effectiveness of our model 

on the UEA&UCR dataset [32], using the classification 
task as a downstream task.  



 

 

TABLE I.  A  SUMMARY OF UEA&UCR  DATASETS  

Dataset Train Seize Test Seize Length Classes Type 
Birdchicken 20 20 512 2 IMAGE 

CBF 30 900 128 3 SIMULATED 
ECG200 100 100 96 2 ECG 

Car 60 60 577 4 SENSOR 
Earthquakes 322 139 512 2 SENSOR 

We selected a set of five univariate datasets from the 
UEA&UCR time series classification archives, which 
provides multiple datasets from different domains, with a 
varying number of dimensions, unequal length dimensions, 
and missing values. Meanwhile, they also provide an 
initial benchmark for the existing models. This provides 
accurate baseline information.  

In 2002, the UCR time series classification archive was 
first released with sixteen datasets. It gradually expanded, 
until 2015 when it increased in size from 45 datasets to 85 
datasets. In October 2018 more datasets were added, 
bringing the total to 128 [32]. The new archive contains a 
wide range of problems, including variable length series. 
One of the motivations for introducing the archive was to 
encourage researchers to perform a more rigorous 
evaluation of newly proposed time series classification 
(TSC) algorithms. It has worked: most recent research into 
TSC uses all 85 datasets to evaluate algorithmic advances 
[33]. The newest update version is 2018 version, which 
consists of 30 datasets with a wide range of cases, 
dimensions and series lengths. And for the first iteration 
of the archive, they format all data to be of equal length, 
include no series with missing data and provide train and 
test splits. In conclusion, UEA&UCR dataset is a 
significant dataset for research of analysis of time series 
time data.  

And in order to demonstrate the performance of our 
approach directly, we chose a simple SoftMax model [34] 
as a classifier to classify the extracted features of GCN. 
Based on the performance metrics provided by the 
UEA&UCR archives, we chose the SoftMax classifier with 
and without our high-level semantic feature extract 
algorithm as experimental subjects.  

TABLE II.  ACCRUACY ON CLASSIFICATION DATASETS  

Dataset GCN-SoftMax SoftMax 
Birdchicken 0.90 0.80 

CBF 0.80 0.80 
ECG200 0.75 0.71 

Car 0.70 0.67 
Earthquakes 0.65 0.50 

 
We selected a set of five univariate datasets from the 

UEA&UCR time series classification archives, which 
provides multiple datasets from different domains, with a 
varying number of dimensions, unequal length dimensions, 
and missing values. Meanwhile, they also provide an 
initial benchmark for the existing models. This provides 
accurate baseline information. The summary of these 
datasets can be found in Table Ⅰ . 

The results of classification task are shown in Table
Ⅱ .As shown in Table Ⅱ , demonstrated the better 
performance on three out of the five datasets. Our 
approach can work better in the dataset with small train 
size (Birdchicken and Car), And dataset with specific 
jump change (Earchquakes). This result shows that the 
GCN based algorithm can increase the performance of 
model. And high-level semantic features do have a 
positive impact in time series data tasks.  

 

5. Future work 
In this paper, we have proposed an approach to add 

high-level semantic features to representation learning of 
time series data. As the algorithm suggests, we construct a 
distribution of high-level semantic features and add these 
features to the time series representation learning model.  

Future research should focus on more experiments of 
this approach and certainly further test the feasibility and 
scalability of our proposed approach.  
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