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Abstract  Extreme multi-label classification (XMC) is an important problem of assigning relevant labels to a text from a vast label domain. 
The existing XMC methods utilize machine learning or deep learning methods to extract dense representation from the input text and select 
labels from a vast label set. There are two problems in the existing methods: 1) The performance of abstract label extraction is poor, and 2) 
statistical sampling of negative labels is reducing the accuracy. Recently, BERT or other pre-trained language models are extensively used as 
a document encoder for the XMC problem, whereas text2text models have not been used. In this paper, we propose a method based on 
generating keyphrases by a text2text language model, rather than retrieving labels from the label set. Keyphrase generation is the process of 
predicting both present and absent keyphrases from a given document. The vast majority of generated keyphrases can be found in the whole 
label set, but a portion of generated keyphrases is not in the label set. We consider replacing non-existing labels by existing labels.  Finally, 
generated candidate labels are ranked for selecting the final labels, where a bi-encoder-based label ranking model is trained with false labels 
not in the label set, and produces sentence-pair relevance scores. Our experiments over XMC benchmark collections show notable superiorities 
of our approach.  
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1. Introduction 

Multi-label text classification is assigning more than one 
label to a document, which is a common task in real world 
applications, such as e-commerce commodity 
recommendation [25] and tagging Wikipedia articles [17]. 
Also, in this scenario the set of possible labels from which 
document labels are chosen can be extremely large, which 
is called extreme-multi label classification (XMC) [9] [17] 
[19]. In the XMC task, the target document shall be 
assigned one or more labels from a numerous label 
collection. XMC datasets have many labels, ranging from 
4K in the EUR-Lex dataset and 3M labels in the Amazon3M 
dataset [10]. 

Various methods have been proposed in recent years to 
tackle XMC, including traditional machine learning and 
statistical methods like DiSMEC [18] and FastXML [23]. 
Indeed, with the development of deep learning, more 
researches have focused on deep learning methods such as 
XML-CNN [9]. However, these methods are commonly 
based on certain statistical representation model like Bag-
of-words (BOW) or shallow neural network models that can 
produce word embeddings like word2vec. On the other 
hand, recent methods, such as AttentionXML [17], have 
used hierarchical label trees to classify candidate labels 
from a large label set. However, these approaches do not 
consider utilizing the raw label texts. In recent years, with 

the success of pre-trained language models like BERT [7], 
RoBERTa [22], and XLNet [25], which have a remarkable 
performance because of their contextualized semantic 
representation of texts. In various NLP tasks, XMC 
methods like LightXML [19] utilize pre-trained language 
models for text representations and dynamic negative label 
sampling to avoid the long tail, sparse label space of XMC. 

Although the methods mentioned above have obtained 
salient results in XMC tasks, we also find that the existing 
methods have yet to exploit semantic relatedness of label 
texts for XMC tasks. Virtually, most methods directly use 
BOW features rather than the raw original label texts. 
Meanwhile, because of the superficial semantic 
information and large-scale spare vector representations of 
BOW features, the problems of high computing costs and 
lack of semantic relations between labels are evident.   

Nowadays, almost all of existing methods try to utilize a 
pre-trained language model to obtain text representations   
for retrieving labels from the label set. A number of 
methods that utilize pre-trained language models for 
obtaining text vectors, like LightXML, merely use the 
encoder structure of the transformer. Indeed, the pre-
trained model composed with a transformer encoder has a 
brilliant performance for various NLP tasks. However, they 
are inapplicable to generation tasks such as summarization 



 

 

and question answering. 
In recent years, with the remarkable progress of the pre-

trained language models [7], a vast number of sequence-to-
sequence models have appeared, such as BART [14], which 
is trained by corrupting texts with random noise and 
reconstructing the original document. 

In recent years, more and more NLP tasks can be 
converted into a unified pattern, converting most of NLP 
tasks into the text-to-text formulation. Text-to-text model 
T5 [3][12] shows the capacity of reframing all NLP tasks 
into a unified text-to-text format. Accordingly, it is 
feasible to recall labels from a large label set by a text-to-
text language model. For instance, there exist researches 
on keyphrase generation with a text-to-text pre-trained 
language model [1][21]. So, we are naturally enlightened 
by this direction. There exists potential for utilizing a text-
to-text pre-trained language model for generating labels for 
XMC. 

To address the abovementioned approaches, we propose a 
method based on keyphrase generation and semantic 
similarity for XMC tasks. Firstly，we try to use a text-to-
text language model to generate keyphrases from input 
texts. These keyphrases can be regarded as concise 
representations of the input text. Since the text-to-text 
model may generate keyphrases which do not belong to the 
label set, we need to select labels close to these non-
existent labels.  

There are two strategies for non-existent labels. First is 
directly removing the non-existent labels. However, this 
way may lose the semantic information obtained from the 
text-to-text model. Therefore, our method uses a more 
flexible approach by sentence-transformer [15] to 
transform non-existent labels. Sentence-transformer is a 
framework based on Sentence-BERT, which can obtain 
embeddings from sentences and calculate semantical 
similarities between sentences. We use a sentence-
transformer to calculate the similarity between each 
generated keyphrase which is not in the label set and each 
label in the label set. Moreover, we replace all non-existent 
labels with labels having the highest semantic similarities. 
Finally, the candidate labels are ranked to choose the final 
predicted labels. 

Our contribution is converting label recall and 
classification tasks into generation tasks by a text-to-text 
language model. On the other hand, our label recalling 
method based on keyphrase generation is distinct from any 
other existing label recalling method of XMC tasks. The 
comparison and difference between our method and other 

conventional methods are shown in Figure 1. 
We believe the generation model can be finetuned to 

generate texts that are semantically close to the predefined 
labels. Since our method utilizes text information of labels, 
we can also compute semantic relatedness between label 
names. 
 In this paper, we proposed a brand-new method based on 
keyphrase generation and semantic similarity for the 
extreme multi-label classification task. We evaluate our 
model on four public datasets of the XMC task. Compared 
with the state-of-the-art model, the result from our 
proposed method shows a competitive result. 
 

2. Related Work 
2.1 Machine Learning method 

Previous XMC methods conventionally use machine 
learning techniques to obtain labels from the label set by 
BOW and TF-IDF features. The enormous number of labels 
means huge spare vector dimensions. There are three basic 
directions: One-vs-all (OVA) method, label tree-based 
method, and embedding-based method. OVA methods like 
Parable [24], DiSMEC [18], PD-Sparse [6] apply binary 
classification tasks to each label. This method has several 
problems, such as computing cost and model size. 

Another category is the label tree-based method, which 
focuses on decreasing computing cost caused by the large 
label number in the OVA method. The method like 
FastXML [23] and CRAFTML [20] can build a hierarchical 
tree with partitioned labels clusters. The tree-based 
methods' difficulties are the tree structure's design and how 

Figure 1: the comparison between our method and conventional 

method. 

 



 

 

to build an efficient and accurate classifier for each tree 
leaf node. Most of label tree-based methods use k-means 
[18] or other clustering algorithms to partition labels. 

The final category is embedding methods, which aim to 
transfer high label dimension into lower dimension space. 
Some modified embedding methods like SLEEC [13] 
utilizes label compression and decompression on label 
embeddings for XMC tasks. 
2.2 Deep learning method 

Deep learning models have proved their capability and 
potential in various NLP tasks. Compared with the classical 
machine learning based method, the deep learning method 
have made significant progress in text information 
extraction and representation. However, they need higher 
float computing resources like GPU and TPU. Generally, 
machine learning methods will use BOW features as the 
representation of input text. In contrast, deep learning 
methods like CNN-XML and LightXML can apply deep 
learning models to represent input texts, which can gather 
more contextualized semantic information.      
2.3 text-to-text language model 

The pre-trained language model has become the most 
popular topic in the NLP field for the last few years. Some 
existing methods, Like LightXML, have used pre-trained 
language models like BERT and RoBRETa for text 
representation. On the other hand, the text-to-text models 
like BART, T5, and Pegasus have different structures 
compared with each other model. BART uses a denoising 
autoencoder architecture and bidirectional attention 
mechanisms. T5 can be finetuned for a wide range of 
language tasks. And Pegasus focuses on extracting gap-
sentences from a document with more parameters than the 
other two models. 

Currently, there is no research exploring the possibility of 
a text-to-text model for XMC tasks. Diya, A [1] discussed 
the keyphrases generating tasks by finetuning the BART 

model. In this paper, text-to-text models are finetuned by 
specific formats and can generate keyphrases by input text. 
The keyphrase format is like a label in the XMC tasks. 
2.4 Sentence-transformer  

Sentence-transformer is an improved model of the pre-
trained-BERT model that operates at the sentence level 
[16]. It has been shown to be effective for a wide range of 
tasks, including semantic textual similarity and document 
classification. Sentence-transformer can encode sentences' 
semantics and contextual relationships, resulting in a 
strong performance on various benchmarks. There are two 
types of sentence-transformer models: Cross-encoder, 
which can deliver two sentences into a transformer model 
and generate a value of output as the relevance score of the 
sentence pair, and bi-encoder, which can generate 
embedding of sentences, and to cosine similarities of these 
embeddings are used to evaluate semantic relatedness of 
the sentences. 

3. Methodology 
Figure 2 shows the overview of our proposed new model 

for XMC tasks. This model can be separated into three 
parts: Keyphrase generation, label combining, and label 
ranking. Firstly, we should train a text-to-text model for 
keyphrase generation from documents and their ground 
truth labels. Next, we utilize a method to resolve the non-
existent label problem and obtain filtered predicted labels 
after the combining part. Finally, we consider using the 
method of semantic comparison to sort the labels from the 
last step.  
3.1 Problem definition 

Based on the information above about the extreme multi-
label classification, we should use a more specific 
expression to represent it. In XMC tasks, we denote the 
XMC datasets as𝐷! . The 𝐷!  consists of a set of tuples 
(𝑑" , 𝐿") including documents and their ground truth label 
sets, where d i is the i-th document and 𝐿" = {𝑙#, 𝑙$, … , 𝑙"} is 

Figure 2: The overview of our proposed model based on keyphrases generation and semantic similarity. 

 



 

 

the set of ground truth for i-th document. Otherwise, 𝐷! 
also have a whole label set SL that includes all labels that 
appear in all training and testing dataset.  
3.2 Keyphrase Generation 

In This part, we proposed a method that can be performed 
in text2text style downstream task to get some preliminary 
keyphrases which can be divided into raw labels in XMC 
tasks. These raw labels are close to the real labels rather 
than indexes in the XMC tasks. Based on the real labels 
pipeline in our method, some datasets of XMC tasks, such 
as Amazon-3M, are hard to evaluate because these datasets 
need complete real label information. 

We train a standard text2text model for keyphrase 
generation tasks. Considering the model size and the 
masked and reconstruction strategy, we choose BART 
model as the primary language model, which has a 
bidirectional encoder and autoregressive decoder [14] and 
is suitable for text generation tasks. The basic 
mathematical expression for keyphrases generation is 
given a sequence of input variables𝑋 = [𝑥#, 𝑥$, … , 𝑥%] and a 
sequence of output  𝑌1 = [𝑦3#, 𝑦3$, … , 𝑦3&]  based on the 
probability estimation: 

𝑃5𝑌16𝑋; 𝜃9 = 	; 𝑃(𝑦3"	|𝑦3':&)#, 𝑥#:%; 𝜃)
&*#

"+#
		 (1) 

where 𝑦3'		 is the <BOS> token and the 𝑦3&*# is the <EOS> 
token, 𝜃 is the parameters of the model. Otherwise, the 
loss function is the cross-entropy of predicting sequence 𝒀? 
and ground truth sequence which consists of a set of labels. 
The loss function can be represented by: 

𝐿 =	−AA𝑀,𝑦,,. log5𝑦3,,.9
/

.+#

			
0

,+#

(2) 

where 𝑇 is the length of ground truth sequence, 𝑁 is the 
length of predicted keyphrases sequence, 𝑀, is the masked 
value for the position 𝑗, 𝑦,,.	is the ground truth sequence, 
𝑦3,,. is the 𝑗-th token of predicted keyphrases sequence. 
  Keyphrases are a word sequence that can be shown the 
concise representations of the input texts with different 
organizational format compared with the label set of a 
XMC dataset. The processing of mapping keyphrases into 
XMC labels is: 

{	𝑌1.1# , 𝑌1.1$ , … , 𝑌1.12 }
34%5&2"6
J⎯⎯⎯⎯⎯L	{𝐿1784# , 𝐿1784$ , … , 𝐿1784𝒕 } (3)	 

where 𝑌1.1={𝑦3#, 𝑦3$, … , 𝑦3&} is the predicted keyphrases, and  
𝐿1784 = {𝑙N#, 𝑙N$, … , 𝑙N&!}, 𝑛 and 𝑛: are the number of predicted 
token of keyphrases and the number of mapped labels, 𝑡 is 
the number of instances in the dataset. 

Because of the text-to-text feature, we need raw text of 

each document as the input text and raw label texts of the 
raw document. The pre-trained text-to-text model can 
predict keyphrases after training processing by our specific 
data format like Figure 3. In this part, we need to 
preprocess input text data first. The training dataset for the 
text-to-text model should be reformatted into two parts: 
documents and labels. At the beginning of each document, 
we add a ‘summarize:’ prefix to guide the text-to-text 
model to generate keyphrases. 

 

Figure 3 an example of keyphrase format for XMC dataset.  

Furthermore, before the training step, we must prepare the 
labels corresponding to each document. So, each training 
record has a complete raw input text which is adhered to a 
prefix and a ground truth label set. After combining the 
training data, we feed training data into the text-to-text 
model for training. Otherwise, considering the length of 
input text is longer than the max-length of text-to-text 
models, we use a default configuration of truncation of 
text-to-text models rather than modify it for longer text to 
simplify more models as far as possible. Text-to-text pre-
trained models can obtain contextualized more semantic 
information and can be easier to recall the abstract labels 
not in the input document but in the ground truth label set 
of the input text. 

The other important point is the configuration of 
prediction. After training the text-to-text language model 
with our specific training data and settings, we can use the 
pre-trained model to generate keyphrases. The keyphrases 
generated by the text-to-text model contain a few labels 
that are the ground truth labels of input text. However, 
because of the feature of the text-to-text model, the model 
can generate redundant and very similar labels, which will 
influence the prediction results. We should adjust 
hyperparameters to avoid a mass of very similar labels in 
the predicted keyphrases. 
3.3 Label combination 

Since non-existent labels can be generated in the 
generating part, it is necessary to transform the keyphrases 
into existing labels. The non-existent labels are not useless 
in our results. Compared with redundant and very similar 
labels, the non-existent but different meanings between 



 

 

labels can express abundant semantic information of input 
texts. With this in mind, the new method we proposed is 
replacing these labels with the most similar labels in the 
whole label set. We call the most similar label as the 
similarity candidate label. 

For each non-existed label, we can obtain its label 
embedding 𝑢&;&  by BERT model. Meanwhile, the 
embeddings of whole labels of the dataset can be expressed 
as 𝑈< = [𝑢#, 𝑢$, … , 𝑢/], and 𝑁 is the number of labels. The 
most similar label for one non-existent label is:  

𝑙847=564 = argmax
"∈[#,/]

5cos(𝑣&;&, 𝑢")9		 (4) 

Where 𝑣&;&  is the embedding of non-existent label and  
𝑙847=564 is the most similar label that is used to replace a 
non-existent label. The cosine similarity cos	(𝑣&;&, 𝑈<) is 
the is the vector product.  

Figure 4 shows the basic flow of replacement for non-
existent labels. The core of combining is finding the most 
similar label in the whole label set to replace a non-existent 
label generated by the text-to-text model. Regarding the 
label format, we can regard a label as a short sentence that 
can easily use an encoder transformer model to obtain 
embedding vectors and compute the semantic similarity. 
Due to the enormous number of labels in the datasets of 
XMC tasks, if we compute the semantic similarity of each 
label with all labels in the dataset, the time cost is 
unacceptable. So, we choose the bi-encoder [15] as the 
model for computing similarity candidate labels, as shown 
in Figure 5. 

 

In the bi-encoder model, we can first compute all label 
embeddings of the label set and use these embeddings to 
calculate the cosine similarity with each non-existent label. 

Furthermore, in a group of generated labels from one 
input text, more than one predicted and combined labels 
can have the same similar candidate label. We need to find 
the second semantically similar label for these labels to 
avoid the conflict of label combining.  
3.4 Label Ranking 

In the XMC tasks, we need to recall as many ground truth 
labels as possible. So, the accuracy of the labels that are 
recalled is crucial. Our investigation found that the 
sentence-transformer model’s capability of embedding and 
semantic similarity can also be used in label ranking. 
Maybe this part is close to the original embedding method 
with a pre-trained language model. For each document, we 
first embed the document and the combined labels. Then 
we calculate the cosine similarity between the document 
embedding and each combined label and rank these labels 
by the cosine similarity score. This process is similar to the 
label combing part and can be expressed by:  

𝐿185&. = 𝑠𝑜𝑟𝑡5cos5𝑣A;6 , [𝑙N#, 𝑙N$, … , 𝑙N/]99	 (5) 
where [𝑙N#, 𝑙N$, … , 𝑙N/] are the combined labels that have been 
replaced all non-existent labels, 𝐿185&. is ranked by cosine 
similarity scores between document and combined labels.  
Figure 6 shows an example of the ranking part of our work. 

Figure 6: A example of ranking part.  Each combine labels are 

computed the semantic similarity with input document by sentence 

transformer. Red means this label is the ground truth label for this 

document, black labels are negative labels.  

Figure 4: An example of replacement for non-existent labels. Red 

labels are ground truth labels of current document, and the blue label 

‘inkling’ is non-existent label. The red label ‘inklings’ is the replaced 

label from the whole label set.  Black labels are negative labels.  

 

Figure 5: How to compute label cosine similarity with label set and 

find most similar label from the whole label set in dataset.  



 

 

Training data for the ranking model has three parts: 1. Raw 
input document, 2. combined labels, and 3. each score of 
combined labels. Instead of using labels from keyphrase 
generation, we use the labels from combined labels because 
the labels of the generating part have many kinds of noise, 
such as replicative labels and non-existent labels, which 
will disturb the accuracy of the sentence-transformer 
model.  

Unlike the combining part, we can train the sentence-
transformer with negative samples. As for the training part, 
the simplest method is assigning the ground truth label 1 
score and the negative sample label score 0.  
 

4. Experiments 
4.1 Evaluation Metrics 

Regard to XMC tasks, the P@k (Precision at k) is a very 
explicit value for evaluating model performance. In our 
works, the P@k value can be defined as: 

𝑃@𝑘 =
1
𝑘
	 A 𝑦=

.

=∈85&."(CD)

	 (6) 

where 𝑦 ∈ {0,1}<  is the true labels value,	 𝑦3  is the final 
output of a model. Also, 𝑙 is the index in the top-k output 
labels.  
4.2 Datasets  

Since we need to compute the semantic similarity of 
labels with each other, it is necessary to obtain the original 
raw label texts and document texts, rather than the label 
index and BOW features given in XMC datasets. The raw 
input documents of XMC datasets can be found easily, but 
the raw label texts are hard to be found. Almost all of raw 
documents of XMC datasets can be found, but a significant 
portion of XMC datasets provide raw documents and 
numerical label indexes instead of real labels. Fortunately, 
some datasets, like EURLex-4K [4], Wiki10-31K [5], 
AmazonCat-13K [10], and Wikipedia-500K [10], provide 
the raw label texts. Therefore, our main experiments will 
be performed on these four datasets. Table 1 shows the 
statistics of the datasets from AttentionXML [17]. 

 
4.3 Experiment Settings 

We try more than one text-to-text models for XMC tasks 
in the keyphrase generation part. However, depending on 
different datasets, various text-to-text models have 
different performances. We utilize BART-base [14], T5[3], 
and Pegasus [12] as the text-to-text language model with 
5e-5 learning rate, 2(large size) or 4(base size) training 
batch size, and five training epochs for all datasets. As for 
the combining part, we chose a bi-encoder as the model, 
which is used to compute the embedding of labels. 
Regarding the ranking part, because of the requirement of 
supervised data for training bi-encoder, we must use labels 
that are predicted by the pre-trained text-to-text model with 
training documents. We choose all-MiniLM-L6-v2 as the 
bi-encoder model with 64 batch size. We also choose cross-
encoder/stsb-RoBERTa-base as the cross-encoder model 
with 24 batch sizes in our experiments. Both two models 
are trained with four epochs. 

Considering the time cost, for Wiki500K and AmazonCat-
13K, we do not use all training data to train the text-to-text 
model and ranking model. We randomly select 5% train 
data of Wiki500K and 10% train data of AmazonCat-13K 
to train the text-to-text models and ranking models. 
 

5. Results and Analysis 
We evaluate our model on four public datasets with raw 

documents and labels: EUR-Lex 4K, Wiki10-31K, 
AmazonCat-13K, and Wiki500K. Our raw document texts 
come from AttentionXML [17]. The raw label texts of 
AmzaconCat-13K, Wiki500K, and Wiki10-31K are also 
from Attention XML. The raw label texts of EUR-Lex are 
from (Johannes et al. 2010) [5]. 

The performance metric is P@k (Precision@k), a simple 
and valuable evaluation metric used in XMC tasks. Table 2 
shows the performance of our method in XMC tasks and 
the comparisons with other methods. 

Since there is no previous method based on a text-to-text 
model of keyphrase generation for XMC tasks, we compare 
our method with DiSMEC, AnnexML, Parabel, XML-CNN, 
AttentionXML, and LightXML. The results of all the 
baselines are from AttentionXML and LightXML. 
Considering the fair comparison, all the results on our 
method in table 2 are by facebook/bart-base model except 
Wiki500(using Pegasus), because BART with bi-encoder 
obtained the high score in Wiki10-31K, and AmazconCat-
13K.  

We also compared with an up-to-date XMC research XRR 

Ntrain Ntest Nlabel Dtfidf

EUR-Lex 15,449 3,865 3,956 186,104

Wiki10-31K 14,146 6,616 30,938 101,938

AmazonCat-13K 1,186,239 306,782 13,330 203,882

WIki500K 1,779,881 769,421 501,008 2,381,304

Table 1: The statistics of four datasets. N t r a in  and N t e s t  mean the 

number of instances of training set and testing set. N l abe l  refers to 

the total number of labels in dataset. D t f id f:  the dimension of TF-

IDF feature.  



 

 

[11], which is a complex system and uses semantic and 
statistics information for XMC tasks. Although XRR 
method provide overwhelming performance, our method 
shows a highest score of P@1 in wiki10-31K. 

Our method outperformed the almost traditional one-vs-
all and word embedding methods in EUR-Lex, Wiki10-31K, 
and Wiki500K. Moreover, our method shows the great 
performance in P@3 of Wiki500K rank only second to XRR. 

However, the performance of AmazonCat-13K could be 
better because of its different categories. Simultaneously, 
our method is close to the new deep-learning-based 
methods like AttentionXML and LightXML.  

 
5.1 Difference combination of keyphrases generation 
and label ranking.  

In relative work, we have shown the difference between 
BART, T5, and Pegasus. We also run different models, 
consisting of different text-to-text models and sentence-
transformers in EUR-Lex 4K. The results are given 
in Table 3. Pegasus with cross-encoder obtained the 
highest score of P@1, but the P@3 and P@5 are not the 
best scores. T5 with cross-encoder and Pegasus obtained 
the highest score of P@3 and P@5 separately. However, 
Pegasus (with 568M parameters) has a longer training 
time and larger model size compared with BART-base and 
T5-base. 

 

6. Conclusion and Future Work  
We proposed a brand-new method for extreme multi-label 

classification tasks in this paper. Compared with existing 
methods, there are two innovative points in our method. 
The first is using keyphrase generation to replace classical 
label recalling. The second is utilizing the semantic 
representation to evaluate the relevance between labels and 
the original document based on raw label texts. We 
evaluate our method with various combinations in four 
public datasets of the XMC task. Our method's results 
outperformed most of traditional XMC methods and were 
close to SOTA. Compared with SOTA, our method utilizes 
a different way of label recalling, and the subsequent 
processing combining and ranking parts are also based on 
semantical similarities. 

In future work, we can try more modified and customized 
text-to-text models for keyphrase generation, to enhance 
the performance of keyphrase generation. On the other 
hand, the ranking performance still has an ample room for 

Table 3: The comparison with the results of all baseline and our 

method. Cross-encoder: using cross-encoder to replace bi-encoder 

ranking part.  

EUR-Lex P@1 P@3 P@5

BART 84.09 69.31 53.07

BART+cross-encoder 84.11 69.84 53.16

T5 83.54 70.22 55.19

T5+cross-encoder 84.91 71.40 55.32

Pegasus 83.70 69.14 56.67

Pegasus+cross-encoder 85.25 70.77 55.92

Table 2: The comparison with the results of all baseline and our 

method.  



 

 

improvement. 
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