

DEIM Forum 2023 1b-3-4

Mapping Wikipedia Categories and Lists to DBPedia Ontology Based on
Structural and Semantic Features

Zhenyang ZHANG† Zhaoyi WANG‡ and Mizuho IWAIHARA‡

†Graduate School of Information, Production and Systems, Waseda University

2-7 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135 Japan

E-mail: †zhangzhenyang@fuji.waseda.jp, ‡wangzy-joey@akane.waseda.jp, ‡iwaihara@waseda.jp

Abstract Ontology mapping plays an important role in the integration of knowledge resources and many down-stream

tasks that include entity recognition, such as entity linking, entity typing, table column typing, relation extraction, question

answering, and other knowledge graph-related tasks. With the development of deep leaning and its successful application to

various domains, the deep learning approach has been applied in ontology mapping. However, existing methods rarely focus

on the hierarchy of the knowledge graph and the syntactic structures of the ontology class names. In this paper, we propose a

novel ontology mapping method based on structural and semantic features. It contains two main parts: (i) Type inheritance

based on structural features and (ii) Fine-tuning a classifier based on pre-trained language model BERT for capturing semantic

features. For the first part, we design heuristic rules for assigning and propagating DBPedia types over Wikipedia list and

category nodes. For the second part, we utilize POS tagging and dependency parsing graphs to find root phrases of Wikipedia

category names, then use the unsupervised SimCSE model to generate embedding of each category name. Then the cosine

similarities between these embeddings are used to fine-tune the BERT model. We also search sibling nodes which are likely to

share the same DBPedia type, for augmenting the training set. Finally, we use Random Forests to select the most specific node

among the results generated by two parts. Experimental results show that our method achieves superior results than baselines.

Keyword Knowledge graph，Ontology mapping，Wikipedia categories and lists，Distant supervision

1. Introduction

Ontology mapping attempts to match entities from

different ontologies that have semantically similar

properties. A mapping is a connection between two

matched entities, where each mapping is often categorized

as equivalence and subsumption.

Wikipedia is the world’s largest and free encyclopedia

maintaining high-quality trusted information. Most of its

entries (i.e., Wikipedia articles) can be considered as

(semi-structured) representations of entities. Wikipedia

offers three complementary ways to group related entries

together: Categories, lists, and navigation templates [21].

Categories are organized in a hierarchy and each

Wikipedia article is assigned to at least one category. Lists

provide a means for manual categorization of articles and

can include entities that do not have a Wikipedia page yet.

Lists are more difficult to process automatically due to

informal construction.

DBPedia [22] is a large knowledge graph which

leverages gigantic source of knowledge by extracting

structured information from Wikipedia. The DBPedia

ontology is the heart of DBPedia. The ontology (at the

time of 2022-08-29) covers 768 classes which form a

subsumption hierarchy as Figure 2 (a) shows and are

described by around 3000 different properties. The

DBPedia ontology (at the time of 2022-08-29) currently

contains about 4,828,418 instances.

CaLiGraph [8] is a large semantic knowledge graph

with a rich ontology compiled from the DBPedia ontology

and Wikipedia categories and list pages, as Figure 3 (a)

shows. The ontology is enriched with fine-grained value

restrictions on its classes that are discovered with the

Cat2Ax [9] approach. A large number of CaLiGraph's

entities is extracted from Wikipedia listings through a

combination of the ontological information and

transformer-based extractors.

Mapping Wikipedia categories and lists to DBPedia

Ontology plays a critical role in many downstream tasks

that include entity recognition, such as entity linking,

entity typing, table column typing, relation extraction,

question answering, and other KG-related tasks. For

example, for the Wikipedia category

“1999_science_fiction_novels”, if we assign the DBPedia

type “Novel” to this category, then, given a table column

of novel names such as “Vector_Prime” as Figure 1 shows,

we can search the entities of the given column under the

Wikipedia category or search the entity resources in the

CaLiGraph ontology and assign the mapped DBPedia type

to the matched entities as the table column typing.

Figure 1 Illustration of matching column to CaLiGraph

(Wikipedia category). [13]

Lexical matching serves as the foundation for

traditional ontology mapping solutions, which is often

combined with structural matching. This gave rise to

various traditional systems such as Cat2Ax [9]. Their

lexical matching approach, however, only focuses on the

text's surface form, such as overlapping sub -strings and

sharing a textual pattern, which is unable to capture word

semantics. Lexical and structural matchings have recently

been suggested to be replaced by machine learning; for

instance, DeepAlignment [11] and OntoEmma [16] use

word embeddings to represent classes and compute the

similarity of two classes according to the Euclidean

distance between their word vectors. However, these

approaches either require extensive feature engineering

that is ad-hoc and relies on great amounts of annotated

examples for training, or they use classic non -contextual

word embedding models like Word2Vec, which only learns

a global (context-free) embedding for each word.

Contrarily, pre-trained transformer-based language models

such as BERT [2] and SimCSE [8] can learn robust

contextualized text embeddings, and often just need a

little amount of training resources to be fine-tuned.

Although these approaches excel at many NLP tasks,

ontology mapping has not yet received enough research

attention from them.

In this paper, we propose a new ontology mapping

method that utilizes hierarchies of two knowledge graphs

to do type inheritance and exploits semantic embeddings

to construct training data for BERT fine-tuning to perform

type prediction. Specifically, our method includes the

following main steps: (1) Type inheritance, where we

predict the DBPedia type based on heuristic rules, which

provides training samples for distantly supervised learning.

(2) Finding root words. In this paper, a root word is a

single noun word which holds the most basic meaning of a

long noun phrase. For example, for a given CaLiGraph

class name “Opera house in Puerto Rico”, its root word is

“house”. Here we do the POS tagging to find root words of

CaLiGraph class names. (3) Finding root phrases. In this

paper, a root phrase is defined as a root word with a prefix

of n-words which have “compound”, “modifier of nominal”

or “appositional modifier” dependency relations with the

root word, and the part of speech (POS) of the words in

root phrase must be “NOUN”. For example, for a given

CaLiGraph class name “Opera house in Puerto Rico”, its

root phrase is “Opera house”. A root phrase is a part of a

CaLiGraph class name. Here we extend a root word to a

root phrase utilizing Level Order Traversal on dependency

parsing graph. (4) Root path search . In this paper, a root

path is defined as the concatenation of the ancestor nodes’

root word which appears in the path from the given

CaLiGraph class name node to the top of CaLiGraph’s

hierarchy. For example, for a given CaLiGraph class name

“Opera house in Puerto Rico”, its root path is “Venue

Theatre House”. Here we search the ancestor nodes in the

hierarchy of CaLiGraph and find their root words to

generate the root path. (5) Semantic embedding generation

for computing cosine similarities, where we utilize

SimCSE to generate embeddings for constructing training

data. (6) Training data augmentation, where we augment

the training data for BERT fine-tuning by searching

sibling nodes in the hierarchy of CaLiGraph. (7) BERT

fine-tuning, using the training data, where a suitable

pre-trained BERT model is chosen and fine-tuned. (8)

Combining results, where Random Forests is u tilized to

select the most plausible type.

We evaluate our method on the CaLiGraph-DBPedia

mapping task, and experimental results show that our

method achieves superior results than the baseline model

Cat2Ax in terms of Macro-Averaged F1 scores.

2. Related Work

2.1 CaLiGraph and Cat2Ax

CaLiGraph is a large semantic knowledge graph with a

rich ontology compiled from the DBPedia ontology and

Wikipedia categories and list pages [8]. Since the first

version released in Oct. 14, 2019, the latest (19th) version

was released in Sept. 21, 2021. The ontology is enriched

with fine-grained value restrictions on its classes that are

discovered with the Cat2Ax approach. Through a

combination of the ontological information and

transformer-based extractors, many CaLiGraph instances

are retrieved from Wikipedia categories and listings.

Classes in CaLiGraph are derived from lists and categories

in Wikipedia [13].

The Cat2Ax [9] approach has four major steps: (1)

Identify candidate category sets that share a textual

pattern. (2) Find characteristic properties and types for

candidate sets and combine them to patterns. (3) Apply

patterns to all categories to extract axioms. (4) Apply

axioms to their respective categories to extract assertions.

2.2 Distant Supervision

Machine learning methods basically need a collection of

training data. Manually assigning labels to a collection of

documents is a standard method for constructing training

data. This method is time- and money-consuming, and if

the corpus is vast, produced data are not for models to be

trained.

Another method to generating training data is distant

supervision. Distant supervision is a learning scheme in

which training samples are labeled automatically based on

certain rules, suitable for situations where training data

construction is costly. Distant supervision’s assumption

for relation typing is that any statement that contains two

entities that are involved in a relationship may refer to

that relationship [12].

Distant supervision for semantic typing is an extension

of the paradigm used by [18] for utilizing WordNet to

uncover hypernym (is-a) relations between entities, and is

analogous to the application of poorly labeled data in

bioinformatics [19][20], and in relation extraction which

has no labeled data [12]. In our method for mapping

entities to knowledge graph types, we apply distant

supervision to discover mapping between CaLiGraph

ontology classes and DBPedia types, based on manually

constructed rules to generate initial mappings, then extend

the mappings to siblings and descendants in the

CaLiGraph hierarchy, that are predicted to share the same

DBPedia type through dense representations. Based on the

observations on Wikipedia category/list name structure

and the hierarchy of CaLiGraph classes, we generate four

rules for entity mapping between CaLiGraph nodes and

DBPedia types.

2.3 BERT pretraining and finetuning

 BERT is a contextualized pretrained language model

built on bidirectional transformer encoders [15]. Both

pretraining and finetuning are part of its training paradigm.

In pretraining, the input consists of a sequence that

includes a special token [CLS], tokens from one sentence

A, another special token [SEP], tokens from another

phrase B that follows A. Every token's first embedding

encodes its content, place in the sequence, and the phrase

it belongs to (A or B). The model’s architecture consists of

several sequential layers with the same design. The

multi-head self-attention block, which is its core part,

computes a contextual hidden representation of each token

by taking into account the whole output of the preceding

layer's sequence. The embeddings of the tokens from the

final layer can be used as the input for a customized

downstream layer. Pretraining is conducted by minimizing

losses on two tasks: Next sentence prediction and masked

language model. Contrary to traditional non-contextual

word embedding techniques, which only give each token

one embedding, BERT may identify many instances of the

same token. In finetuning, customized downstream layers

are fine-tuned based on a pretrained BERT model. For

finetuning, it normally needs a relatively small numb er of

epochs and data samples [2].

2.4 Sentence embedding

Sentence embedding techniques represent entire

sentences and their semantic information as

low-dimensional vectors. This helps the model in

understanding the context, intention, and other nuances in

the entire text. Sent2vec [17] utilizes word n -gram

features to produce sentence embeddings. Arora et al.

propose SIF in which sentences are represented as the

weighted average of the word embeddings.

Recently, Siamese networks and contrastive learning

framework have been proposed for sentence embedding

models. SimCSE [8] is a simple contrastive learning

framework that advanced SOTA records on sentence

embeddings. SimCSE employs unsupervised and

supervised approaches. The unsupervised SimCSE takes

an input sentence and predicts itself in a contrastive

objective, with only standard dropout used as noise. In our

work, we utilize SimCSE for calculating cosine

similarities between candidate root phrases (or root path)

and DBPedia types.

3. Problem definition

Our goal is to predict DBPedia types of Wikipedia

category and list names that are included in CaLigraph.

We formulate this task as a multi -class classification task.

Given a pair of ontologies of two knowledge graphs 𝐾

and 𝐾′ , 𝑂 and 𝑂′, whose named class sets are 𝐶 and

𝐶′, respectively, and the ontology class hierarchies 𝐻 and

𝐻′ of two knowledge graphs. Then the ontology mapping

problem is to determine a mapping M from 𝐶 to

𝐶′ where M maps each class 𝑐 ∈ 𝐶 to a target class 𝑐′ ∈

𝐶 such that 𝑐′ represents the minimum concept that

subsumes 𝑐. Table 1 shows the symbols used in our

method.

Table 1. Symbol list.

4. Methodology

4.1. Model Structure

In this paper, we propose a new ontology mapping

method, which can predict the DBPedia type for a given

CaLiGraph ontology class based on structural and

semantic features. Figure 2 shows the framework of our

method.

Our model mainly contains two parts: (i) Type

inheritance based on structural features and (ii) Classifier

based on fine-tuning the pre-trained model BERT on

semantic features. The training process mainly consists of

the following five steps: (1) Do POS tagging of

CaLiGraph ontology class names to find root words. (2)

Extend each root word to a root phrase utilizing

dependency parsing graph. (3) Search the ancestor nodes

in the hierarchy of CaLiGraph and use ancestor nodes’

root words to generate root paths. (4) Utilize SimCSE to

embed the root phrase, root path, DBPedia type into the

same space. (5) Calculate the cosine similarity between

the root phrase, root path and DBPedia type, respectively,

and select the most similar DBPedia type according to

cosine similarities as training data for BERT fine -tuning.

(6) Augment the training data for BERT fine-tuning

utilizing sibling nodes which share the same root phrase.

(7) Use the augmented training data to fine-tune the BERT

classifier.

Finally, we utilize Random Forests to select the most

specific DBPedia type among two results generated by

Type Inheritance and BERT classifier as the final

mapping.

4.2. Type Inheritance

Heuristic rules. We assume there exists a relation that

there is a unique DBPedia specific type for each

CaLiGraph node, thus this relation is a mapping. Based on

this assumption, we construct the following four heuristic

rules to do type inheritance.

Rule 1: A DBPedia class node in the hierarchy of

DBPedia may have an exactly identical class name in the

hierarchy of CaLiGraph. CaLiGraph uses DBPedia as an

upper-level taxonomy and categorizes these rather general

Symbol Description

K Knowledge graphs

O
Ontology of

knowledge graphs

𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑚}
The set of named

classes of O

H
Ontology class

hierarchy

𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑚}
The set of DBPedia

types

Table 1 Symbols of problem.

Figure 2 Overall structure of our proposed model.

types in DBPedia into more specific types. We check an

exactly matching CaLiGraph node in the hierarchy for

every DBPedia node. Figure 3 shows an example of Rule

1.

Figure 3. Example of Rule 1

Rule 2: Inheritance. If a CaLiGraph node c is mapped to

a DBPedia type t, then c’s descendants are also mapped to

the same type t. So, if a DBPedia node has an exactly

matching CaLiGraph node, then its descendant

CaLiGraph nodes can also be mapped to the DBPedia node.

For example, as Figure 4 shows, the CaLiGraph node

“20th-century_American_women_politician” has an

ancestor node “Politician”, and this ancestor node has an

exactly matching DBPedia node “Politician”, so we can

assign this DBPedia type “Politician” to the CaLiGraph

node “20th-century_American_women_politician”.

However, a descendant may be inheriting from multiple

ancestor nodes, so this rule will give candidate types but

not a unique type, as Figure 5 shows.

Figure 4. Example of Rule 2

Figure 5. Example of multiple inheritance

Rule 3: The depth of DBPedia node in the hierarchy of

DBPedia reflects the specificity degree of the DBPedia

node. For example, as Figure 6 shows, the depth of

DBPedia node “Politician” is larger than the depth of

DBPedia node “Person”, and we can say the type

“Politician” is more specific than the type “Person”.

Figure 6. Example of Rule 3

Rule 4: The root word of a CaLiGraph node has

significant semantic similarity with a DBPedia type. For

example, as Figure 7 shows, the root word of the

CaLiGraph node “Cuban expatriate sportsperson in the

United States” is “sportsperson” which is semantically

similar with its DBPedia type “Athlete”.

Figure 7. Example of Rule 4

Type Inheritance, Ranking, Selecting.

Given a CaLiGraph node, we first judge whether there

is a path between the CaLiGraph node and also judge

whether there exists a CaLiGraph node in the hierarchy of

CaLigraph exactly matching with the DBPedia node. If the

path exists, we add this DBPedia node to the candidate

type list of the given CaLiGraph node.

Then we define a scoring function for ranking candidate

types: if the candidate type has a score proportional to t he

depth in the CaLiGraph hierarchy, denoted as S_depth, and

if the candidate type contains the root word of the given

CaLiGraph node, we give it a score denoted as S_root, and

we rank the candidate types by the combination of two

scores as follows:

𝑆𝑐𝑜𝑚 = 𝛼 ∗ 𝑆𝑑𝑒𝑝𝑡ℎ + (1 − 𝛼)𝑆𝑟𝑜𝑜𝑡

Here, 0 ≤ 𝛼 ≤ 1 is a hyperparameter. Finally, we select

the DBPedia type having the highest score as the result to

be assigned to the given CaLiGraph node.

4.3. Training data construction

POS tagging. SpaCy is a POS tagging and syntactic

dependency parse tool [24]. We utilize the spaCy

processing pipeline to do POS tagging to find the root

word of a CaLiGraph node. For a long noun phrase, the

root word holds the most basic meaning of the whole

phrase.

Firstly, to generate a Doc object, spaCy tokenizes the

text when we call nlp on a paragraph of text. Next, the Doc

object is processed by a few steps which can be seen as the

processing pipeline. Utilized by the trained pipelines, the

pipeline commonly contains a tagger, a parser , a

lemmatizer and an entity recognizer. Every component in

the pipeline returns the processed Doc, which is then

forwarded to the following component. Figure 8 shows the

example of POS tagging.

Figure 8. Example of POS tagging

Extend the root word to root phrase

Dependency parsing, one of the views of linguistic

structure, refers to examining the dependencies between

the words of a sentence to analyze its grammatical

structure. Based on this, we can extract a dependency of a

sentence that represents its grammatical structure and

defines the relationships between "head" words and words,

which modify those heads.

Sometimes only the root word cannot fully represent the

semantic features of CaLiGraph class names. For example,

for the CaLiGraph class name “South Korean football club

season”, the root word is “season”, but it is hard for us to

assign a plausible DBPedia type to the CaLiGraph node

only according to the root word . However, for the root

phrase "football club season”, we can easily find a

plausible DBPedia type “SoccerClubSeason”.

For the above reason, we extend a root word to a root

phrase utilizing Level Order Traversal on the dependency

parsing graph. The process includes the following main

six steps:

Step1: Tokenize the CaLiGraph class name and create

an index for each token.

Step2: Find a root word based on POS Tagging.

Step3: Draw the dependency parsing graph based on the

root word.

Step4: Do level order traversal on the dependency

parsing graph and judge if the token satisfies a condition.

If it satisfies the condition, add this token to the

candidate_token_list.

Step5: After the level order traversal, sort the

candidate_token_list according to the index created

before.

Step6: Concatenate the sorted tokens in the

candidate_token_list as the root phrase.

Figure 9 Shows an example of Level order traversal

algorithm using FIFO queue on a dependency analysis

graph.

 Figure 9. Example of dependency analysis graph

Another Root phrase extraction strategy

However, while enriching semantic information, root

phrases sometimes bring noise. Therefore, we propose a

different strategy for root phrase extraction. We extract

different lengths of a root phrase as root phrase

candidates.

For example, “American football team in Finland” is a

class in CaLiGraph. After we use dependency parsing, we

can obtain the dependency relationship in Figure 10.

Figure 10. “American football team in Finland” after

dependency parsing.

In the diagram, the “team” forms the head of the above

sentence. The dependency relationship between any two

words is represented with arrows. For instance, “American”

is an adjectival modifier of root word “team”. In this paper,

we start from the root word, then traverses the left and

right subtrees of the root word according to the

dependency tree. The words in the left and right subtrees

are added to the root phrase candidate set with the root

word. In the above sentence, the left subtrees of the root

“team” are “American” and “football”, and the right

subtree is the preposition “in”. We first add the root word

“team” in the root phrase candidate set. Then we combine

“American” and “team” and add the phrase “American

team” to the candidate set, as is “foo tball”. Since

“American” and “football” are directly modifying “team”,

we should combine these three words (“American football

team”) as a root phrase. For the left subtree, “in” is a

preposition which has no sense, and we should not add it

to the root phrase candidate set, but “in” and the following

object “Finland” together form a phrase which modifies

“team”. Thus, “team in Finland” should be added in the

root phrase candidate set. Finally, for this sentence, the

root phrase candidate set contains “team”, “American

team”, “football team”, “American football team” and

“team in Finland”. For each CaLiGraph class, we extract

root phrases as described above.

Using SimCSE to generate node representation.

S en t en c e e m b e d d in g m o d e l s c ap tu r e s e m a n t i c

r e l a t ed n e s s v i a t h e d i s t an c e s b e t w e e n th e

c o r r e s p o n d in g v e c to r r e p r e s e n t a t i o n s w i t h i n t h e

sh a r e d v e c to r sp a c e . B e c a u s e th e r e i s a h ig h s e m a n t i c

s i m i l a r i t y b e t w e e n ro o t w o r d s (p h r a s e s) an d

D B P ed i a t y p e s , w e u s e a s e n t e n c e e mb e d d in g m o d e l

t o r an k t h e c a n d id a t e t y p e s b y m e a s u r in g t h e i r

d i s t an c e to t h e ro o t w o r d s (p h r a s e s) . R e c e n t ly , t w o

s e n t e n c e e m b ed d in g m o d e l s BE R T an d S i m C SE c a t c h

a t t en t io n b e c a u s e o f t h e i r g o o d p e r fo r m a n c e .

Ho w e v e r , u s in g n o n - f i n e tu n ed B E R T s en t e n c e

v e c t o r s d i r e c t ly fo r u n s u p e r v i s e d s e m a n t i c

s i m i l a r i t y c a l c u l a t io n h a s p o o r p e r fo r m a n c e . Th e

s i m i l a r i t y o f B E RT s en t e n c e v e c to r s o f an y t w o

s e n t e n c e s i s q u i t e h ig h , w h er e o n e o f t h e r e a s o n s i s

t h e n o n l in e a r i t y a n d s in g u l a r i t y o f i t s v e c to r

d i s t r i b u t io n .

S i m C S E r e f l e c t s t h e s e m a n t i c r e l a t ed n e s s b e t w e e n

p h r a s e s wh e n u s i n g s i m i l a r i t y m e a s u r e s o n t h e

c o r r e s p o n d in g v e c to r s . T h e u n s u p e rv i s e d S i m CS E

m o d e l i s g r e a t l y o u tp e r fo r m in g p r ev io u s S O T A

m o d e l s .

By o b s e r v i n g C a L i Gr a p h n o d e c l a s s n a m e s , w e

f in d th a t t h e r o o t wo rd o f a c l a s s n a m e h a s a h ig h

s e m a n t i c s i m i l a r i t y t o i t s co r r e s p o n d in g D B P ed i a

t y p e . H o w ev e r , j u s t a r o o t wo r d i s n o t e n o u g h , s in c e

th e r o o t wo r d o n ly i s l a c k i n g co n t ex tu a l i n f o r m a t i o n .

So , w e s e a r c h th e p a th f r o m C a L i Gr a p h n o d e t o t h e

to p o f t h e h i e r a r c h y a n d d o P O S t a g g in g f o r t h e s e

a n c e s to r n o d e s in t h e p a th t o g e n e r a t e a ro o t p a t h to

c a p t u r e c o n t ex t s . H o w ev e r , so m e a n c e s to r n o d e s in

t h e to p o f h i e r a r ch y a r e t o o g en e r a l , s o t h a t m a k in g

th e m m e a n i n g l e s s . W e s e t a m a x i mu m t o k e n n u m b e r

t o d r o p m e a n i n g l e s s ro o t wo r d s . In t h i s p a p e r w e s e t

t h e m a x i mu m t o k e n n u mb e r a s 3 a s a b o u n d a ry . I f t h e

l en g t h o f a r o o t p a th i s l a r g er t h a n t h i s b o u n d a ry , w e

d r o p th e ro o t w o rd b ey o n d th e b o u n d a ry . I f t h e

l en g t h o f t h e ro o t p a t h i s s m a l l e r t h a n th e b o u n d a r y ,

k e ep i t a s i t i s . A s F ig u r e 1 1 sh o w s , t h e ro o t p a th o f

t h e C a L i Gr a p h p a th i s “ V e n u e Th e a t r e H o u s e ” , t h e

t o k e n s “T h in g ” an d “ B u i l d in g ” a r e d r o p p ed b e c a u s e

th e y a r e b e y o n d th e b o u n d ar y .

Figure 11. Example of root path generating

In this paper, we utilize the unsupervised SimCSE

model to generate vectors for both root phrases and root

paths of CaLiGraph nodes and DBPedia types.

Cosine similarity computing. The cosine similarity

between a root phrase of CaLiGraph node embedding

𝑉𝑟𝑜𝑜𝑡_𝑝ℎ𝑟𝑎𝑠𝑒 and a DBPedia node embedding 𝑉𝐷𝐵𝑃 is

calculated for ranking, as follows:

𝑆𝑖𝑚(𝑉𝑟𝑜𝑜𝑡_𝑝ℎ𝑟𝑎𝑠𝑒 , 𝑉𝐷𝐵𝑃) = 𝐶𝑜𝑠(𝑉𝑟𝑜𝑜𝑡_𝑝ℎ𝑟𝑎𝑠𝑒 , 𝑉𝐷𝐵𝑃)

=
𝑉𝑟𝑜𝑜𝑡_𝑝ℎ𝑟𝑎𝑠𝑒
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ × 𝑉𝐷𝐵𝑃

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

|𝑉𝑟𝑜𝑜𝑡_𝑝ℎ𝑟𝑎𝑠𝑒
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗| × |𝑉𝐷𝐵𝑃

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|

The cosine similarity between the root path of

CaLiGraph node embedding 𝑉𝑟𝑜𝑜𝑡_𝑝𝑎𝑡ℎ and DBPedia node

embedding 𝑉𝐷𝐵𝑃 is calculated in the same way. The cosine

similarity between root phrase and DBPedia node is

𝑆𝑖𝑚(𝑉𝑟𝑜𝑜𝑡_𝑝ℎ𝑟𝑎𝑠𝑒 , 𝑉𝐷𝐵𝑃) , the cosine similarity between a

root path and DBPedia node is denoted as

𝑆𝑖𝑚(𝑉𝑟𝑜𝑜𝑡_𝑝𝑎𝑡ℎ, 𝑉𝐷𝐵𝑃) . We calculate the weighted cosine

similarity, with weighting factor 𝛽, as:

𝑆𝑖𝑚𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 𝛽 ∗ 𝑆𝑖𝑚(𝑉𝑟𝑜𝑜𝑡_𝑝ℎ𝑟𝑎𝑠𝑒 , 𝑉𝐷𝐵𝑃) + (1 − 𝛽)

∗ 𝑆𝑖𝑚(𝑉𝑟𝑜𝑜𝑡_𝑝𝑎𝑡ℎ, 𝑉𝐷𝐵𝑃)

We rank DBPedia types according to the weighted

cosine similarity scores and select the DBPedia type which

has the highest weighted cosine similarity to the given

CaLiGraph node.

4.4. Training data augmentation

 In the hierarchy of CaLiGraph, nodes sharing the same

parent node are regarded as sibling nodes. The sibling

nodes which share the same root phrase are likely to have

the same DBPedia type, therefore we search sibling nodes

of the CaLiGraph nodes in the training data constructed

before, to do training data augmentation. The

augmentation mainly contains the following three steps: (1)

Search all sibling nodes of a CaLiGraph node in the

hierarchy of CaLiGraph. (2) For each sibling node, judge

whether it contains the root phrase of the given CaLiGraph

node. If so, we assign the same DBPedia type to the

sibling node. (3) Add the sibling node-DBPedia type pairs

to the training data as data augmentation. Figure 14 shows

an example of augmentation: We have assigned the

DBPedia type “BasketballPlayer” to the CaLiGraph class

name “Virginia Tech Hokies women’s basketball player”

utilizing the methods introduced before, then we search

sibling nodes in the hierarchy and find three sibling nodes

as shown in Figure 14. The root phrase of sibling node

“Penn State Nittany Lions softball player” is “softball

player” which is different from the root phrase of

“Virginia Tech Hokies women’s basketball player”, so we

drop it, and other two sibling nodes share the same root

phrase “basketball player” with CaLiGraph class name

“Virginia Tech Hokies women’s basketball player.” Thus

we assign the same DBPedia type “BasketballPlayer” to

the sibling nodes as augmentation.

4.5. BERT Fine-tuning

Given sets of pairs of CaLiGraph nodes and DBPedia

type nodes generated by the previous method based on

semantic features, a pre-trained BERT model with a

downstream classifier is finetuned on the objective of the

cross-entropy loss. A pair of a tokenized CaLiGraph node

and DBPedia node label with a maximum length of 85 is

an input sequence for the BERT model. The classifier has

a linear layer (with dropout) that receives the embedding

of the [CLS] token from the outputs of the final layer of

BERT as input, and before applying the output softmax

layer, and the output is convertd into a 2-dimensional

vector. The Adam algorithm is used to perform the

optimization. The final output is vectors of a probability

distribution over the DBPedia types for each CaLiGraph

node.

4.6. Result combination

 We can obtain two DBPedia type candidates generated

by Type Inheritance and BERT Classifier introduced

before. We utilize the machine learning method Random

Forests to select an optimum one.

Numerous classification trees are grown in Random

Forests. Here we denote a CaLiGraph node embedding

representation as A, the predicted DBPedia type

embedding representation by Type Inheritance as B, the

predicted DBPedia type representation embedding by the

BERT classifier as C. Then We utilize SimCSE to do the

concatenation of the embedding [A; B] as 𝐸1 and [A; C] as

𝐸2, and use 𝐸1 and 𝐸2 as the input vectors. We refer to

each tree's categorization as a “vote” for that class. The

categorization with the highest votes is selected by the

forest (over all the trees in the forest). Each tree is grown

as follows:

 (1) If the number of cases in the training set is N,

sample N cases at random but with replacement, from the

original data. This sample will be the training set for

growing the tree.

 (2) We use the dimension of the embeddings as M

input variables, a number m << M is specified such that at

each node, select m variables randomly out of M and the

best split on these m is utilized to split the nodes.

Throughout the growth of the forest, m is maintained at a

fixed value.

 (3) Every tree is developed to its full potential.

Pruning is not done.

 To construct training data for Random Forests training,

we annotate labels to a small subset of CaLiGraph nodes

by human annotation. Finally, we enter the training set

into Random Forests to obtain the final prediction.

5. Experiments

In this section, we first introduce datasets used in our

work, followed by evaluation metrics. Then, we present

and discuss our experimental results on the

CaLiGraph-DBPedia mapping task.

5.1. Datasets

Dataset construction. For BERT classifier training, we

first randomly sample a small subset of all CaLiGraph

nodes as the test set, and we annotate the golden label to

the CaLiGraph nodes in the test set by human annotation

as the ground truth. Then we randomly sample a subset of

all CaLiGraph nodes as the training dataset, and we

checked whether the CaLiGraph node in the test set appear

in the training dataset. If it appears, we remove it from the

training dataset to make sure that the CaLiGraph nodes in

the training dataset are disjoint with the CaLiGraph nodes

in the test set. Then we split the training dataset to 80% as

a training set and 20% as a validation set.

For Random Forests training, we use the same test set

constructed above as the test set for Random Forests, and

we randomly sample a small subset of CaLiGraph nodes as

the training set for Random Forests training. We also

check whether each CaLiGraph node in the test set appears

in the training set. If the node appears, we remove it from

the training set.

Table 2. shows statistics of the dataset .

5.2. Evaluation Metrics

W e ev a lu a t e t h e m o d e l p e r fo r m a n c e

o n t h e C a L i Gr a p h - D B P e d i a m a p p i n g t a sk . W e u s e

M a c ro - Av e r a g e d P r e c i s i o n , M a c ro - a v e r ag e d r e c a l l ,

a n d M a c r o - Av e r a g ed F1 a s m a in e v a l u a t i o n m e t r i c s .

Th e fo r m u l a s fo r c a l cu l a t i n g th e s e m e t r i c s a r e a s

fo l lo w s :

𝑃 =
|𝑀𝑜𝑢𝑡 ∩ 𝑀𝑡𝑒𝑠𝑡 |

|𝑀𝑜𝑢𝑡|
(1)

𝑅 =
|𝑀𝑜𝑢𝑡 ∩ 𝑀𝑡𝑒𝑠𝑡|

|𝑀𝑡𝑒𝑠𝑡|
(2)

𝐹1 =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
(3)

5.3. Experimental Settings

For the BERT classifier, we choose the pretrained

bert-base-multilingual-cased models. The details of

training are that epoch = 10, the training batch size = 16,

the input max length = 85, learning rate = 1e-5.

For the Random Forests, n_estimators (number of

classification trees) = 2000, criterion as gini,

max_features = sqrt(n_features).

5.4. Experimental Results and Analysis

Table 3 shows the results of the experiments.

From the results we can see that utilizing the

combination of semantic feature and structural feature to

predict DBPedia types for CaLiGraph nodes outperforms

the method which only utilizes the semantic feature to

fine-tune the BERT Classifier. The reason may be that we

use root words to represent meaning of each CaliGraph

node, but only the root word cannot accurately represent

the semantic feature of the CaliGraph node and cause

Dataset

For BERT Classifier For Random Forests
Number of test

set

Number of training

set

Number of validation

set

Number of training

set
500

CaLiGraph-DBPe

dia
142758 35689 5186

Table 2 Statistics of dataset.

 misunderstanding and errors on predicting the DBPedia

type. Therefore, to contain more useful information, we

extend root words to root phrases to better represent the

semantic feature of CaLigraph nodes. From the result we

can see that the root phrase method outperforms the root

word method. However, some root phrases will bring

meaningless words which can be seen as noise. To reduce

the influence of noise, we further tried different length of

root phrases and select the optimum one.

We also do training data augmentation to increase

training data. Although this augmentation can amplify

noise in the orignal training data, the result shows an

improvement on F1 score.

5.5. Analysis on Errors and Difficulties

After checking the experimental results, we find that

our model’s final prediction has about 10% rate of errors.

We compared predicted DBPedia types with golden labels

of the error CaLiGraph nodes, and find that there are

mainly three kinds of CaLiGraph class names which are

difficult to predict DBPedia types: (1) Proper noun.

Certain CaLiGraph class names only have proper noun,

this make us hard to find the corresponding DBPedia type.

For example, for the CaLiGraph node

“San_Francisco_Deltas_player”, San Francisco Deltas is

an American professional soccer team, but only by class

name we cannot find this information, so the predicted

result of our model is “AthleticsPlayer,” which is not

specific enough. (2) Class name is too short. A number of

CaLiGraph class names are too short to have enough

information for prediction. For example, the CaLiGraph

class name “Molluscicide” is a kind of pesticide, but

according to semantic similarity, the predicted result given

by our model is “Mollusca”, which is wrong. (3) Part of

speech error. According to the semantic feature of class

names, we sometimes obtain a semantically related

prediction result but its part of speech is not matching

with the node. For example, for the CaLiGraph node

“1970s crime”, the most semantically similar DBPedia

type is “Criminal”, but the crime is an event, while

criminal is a person, which is obviously wrong.

Due to the above errors, we need to find more

information such as Wikipedia category pages which can

indicate corresponding DBPedia types.

6. Conclusion and Future Work

In this paper, we proposed a novel ontology mapping

Models
Macro-Averaged

Precision
Macro-averaged recall Macro-Averaged F1

Cat2Ax 0.593 0.607 0.599

SimCSE+BERT

(root word)
0.589 0.608 0.588

SimCSE+BERT

(root phrase)
0.649 0.621 0.635

SimCSE+BERT

(root phrase with

different length)

0.726 0.708 0.707

SimCSE+BERT

(root phrase and sibling

nodes)

0.665 0.633 0.649

Type Inheritance

+SimCSE+BERT

(root word)

0.835 0.826 0.830

Type Inheritance

+SimCSE+BERT

(root phrase and sibling

nodes)

0.884 0.891 0.883

Table 3 Experiment results.

Model SimCSE+BERT (root word) uses the root word of CaLiGraph class names to compute cosine

similarity for training data construction. Model SimCSE+BERT (root phrase) extends the root word to

root phrase to compute cosine similarity for training data construction. Model SimCSE+BERT (root

phrase and sibling nodes) uses the root phrase for training data construction and searches the sibling

nodes for training data augmentation. Model Type Inheritance+SimCSE+BERT (root word) combines

the results of type inheritance and BERT classifier utilizing root word. Model Type

Inheritance+SimCSE+BERT (root phrase and sibling nodes) combines the results of type inheritance

and BERT classifier utilizing root phrase and sibling nodes for data augmenta tion.

method based on structural and semantic features. We

construct four heuristic rules to do Type Inheritance

based on the hierarchies of CaLiGraph and DBPedia. We

use spaCy processing pipeline to do POS tagging to find

root words of CaLiGraph nodes. Then we utilize a

dependency parsing graph based on root word s and do the

Level Order Traversal by FIFO queue on the dependency

parsing graph to extend the root word to a root phrase. We

use SimCSE to generate embeddings of a root phrase and

root path of CaLiGraph nodes and compute the cosine

similarity between them and DBPedia types, and rank the

DBPedia type candidates and select the most similar one

to construct the training data for BERT Classifier

finetuning. We augment the training data by searching

sibling nodes in the hierarchy of CaLiGraph. We further

combine the predictions of Type Inheritance and BERT

Classifier to generate the final result by Random Forests.

Our experiments show that our method is outperforming

Cat2Ax on the CaLiGraph-DBPedia mapping task.

In future work, we intend to apply masked language

model to predict phrases which indicate the DBPedia types

and design a ranking method to rank the candidate

DBPedia types. Furthermore, for a small part of

CaLiGraph nodes, we cannot predict specific DBPedia

types only by class names, because class names are

sometimes too short to contain much useful information.

Therefore, we try to find more information besides the

class names, such as looking up useful keyphrases in

Wikipedia categories and list pages .

References
[1] Biswas R, Sofronova R, Sack H, et al. Cat2type:

Wikipedia category embeddings for entity typing in
knowledge graphs[C]//Proceedings of the 11th on
Knowledge Capture Conference. 2021: 81-88.

[2] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training
of deep bidirectional transformers for language
understanding[J]. arXiv preprint arXiv:1810.04805,
2018.

[3] Gao T, Yao X, Chen D. Simcse: Simple contrastive
learning of sentence embeddings[J]. arXiv preprint
arXiv:2104.08821, 2021.

[4] He Y, Chen J, Antonyrajah D, et al. BERTMap: A
BERT-based ontology alignment
system[C]//Proceedings of the AAAI Conference on
Artificial Intelligence. 2022, 36(5): 5684-5691.

[5] He Y, Chen J, Antonyrajah D, et al. Biomedical
ontology alignment with BERT[J]. 2021.

[6] Heist N, Paulheim H. Entity extraction from
Wikipedia list pages[C]//European Semantic Web
Conference. Springer, Cham, 2020: 327-342.

[7] Heist N, Paulheim H. Information extraction from
co-occurring similar entities[C]//Proceedings of the
Web Conference 2021. 2021: 3999-4009.

[8] Heist N, Paulheim H. The CaLiGraph ontology as a

challenge for OWL reasoners[J]. arXiv preprint
arXiv:2110.05028, 2021.

[9] Heist N, Paulheim H. Uncovering the semantics of
Wikipedia categories[C]//International semantic web
conference. Springer, Cham, 2019: 219-236.

[10] Ho T K. Random decision forests[C]/ /Proceedings of
3rd international conference on document analysis
and recognition. IEEE, 1995, 1: 278-282.

[11] Kolyvakis P, Kalousis A, Kiritsis D. Deepalignment:
Unsupervised ontology matching with refined word
vectors[C]//Proceedings of the 2018 Conference o f
the North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). 2018:
787-798.

[12] Mintz, M., Bills, S., Snow, R., & Jurafsky, D. (2009).
Distant supervision for relation extraction without
labeled data.

[13] QIN J, IWAIHARA M. Annotating Column Type
Utilizing BERT and Knowledge Graph Over
Wikipedia Categories and Lists[J].

[14] Svetnik V, Liaw A, Tong C, et al. Random forest: a
classification and regression tool for compound
classification and QSAR modeling[J]. Journal of
chemical information and computer sciences, 2003,
43(6): 1947-1958.

[15] Vaswani A, Shazeer N, Parmar N, et al. Attention is
all you need[J]. Advances in neural information
processing systems, 2017, 30.

[16] Wang L L, Bhagavatula C, Neumann M, et al.
Ontology alignment in the biomedical domain using
entity definitions and context[J]. arXiv preprint
arXiv:1806.07976, 2018.

[17] Moghadasi, M. N., & Zhuang, Y. (2020, December).
Sent2vec: A new sentence embedding representation
with sentimental semantic. In 2020 IEEE
International Conference on Big Data (Big Data) (pp.
4672-4680). IEEE.

[18] Snow, R., Jurafsky, D., & Ng, A. (2004). Learning
syntactic patterns for automatic hypernym discovery.
Advances in neural information processing systems,
17.

[19] Craven, M., & Kumlien, J. (1999, August).
Constructing biological knowledge bases by
extracting information from text sources. In ISMB
(Vol. 1999, pp. 77-86).

[20] Morgan, A. A., Hirschman, L., Colosimo, M., Yeh, A.
S., & Colombe, J. B. (2004). Gene name
identification and normalization using a model
organism database. Journal of biomedical informatics,
37(6), 396-410.

[21] https://en.wikipedia.org/

[22] https://www.DBPedia.org/resources/ontology/

[23] http://caligraph.org/statistics.html

[24] https://spacy.io/usage/processing-pipelines

