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Abstract  Ontology mapping plays an important role in the integration of knowledge resources and many down-stream 

tasks that include entity recognition, such as entity linking, entity typing, table column typing, relation extraction, question 

answering, and other knowledge graph-related tasks. With the development of deep leaning and its successful application to 

various domains, the deep learning approach has been applied in ontology mapping. However, existing methods rarely focus 

on the hierarchy of the knowledge graph and the syntactic structures of the ontology class names. In this paper, we propose a 

novel ontology mapping method based on structural and semantic features. It contains two main parts: (i) Type inheritance 

based on structural features and (ii) Fine-tuning a classifier based on pre-trained language model BERT for capturing semantic 

features. For the first part, we design heuristic rules for assigning and propagating DBPedia types over Wikipedia list and 

category nodes. For the second part, we utilize POS tagging and dependency parsing graphs to find root phrases of Wikipedia 

category names, then use the unsupervised SimCSE model to generate embedding of each category name. Then the cosine 

similarities between these embeddings are used to fine-tune the BERT model. We also search sibling nodes which are likely to 

share the same DBPedia type, for augmenting the training set. Finally, we use Random Forests to select the most specific node 

among the results generated by two parts. Experimental results show that our method achieves superior results than baselines. 
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1. Introduction 

Ontology mapping attempts to match entities from 

different ontologies that have semantically similar 

properties. A mapping is a connection between two 

matched entities, where each mapping is often categorized 

as equivalence and subsumption.  

Wikipedia is the world’s largest and free encyclopedia 

maintaining high-quality trusted information. Most of its 

entries (i.e., Wikipedia articles) can be considered as 

(semi-structured) representations of entities. Wikipedia 

offers three complementary ways to group related entries 

together: Categories, lists, and navigation templates [21]. 

Categories are organized in a hierarchy and each 

Wikipedia article is assigned to at least one category. Lists 

provide a means for manual categorization of articles and 

can include entities that do not have a Wikipedia page yet. 

Lists are more difficult to process automatically due to 

informal construction.  

DBPedia [22] is a large knowledge graph which 

leverages gigantic source of knowledge by extracting 

structured information from Wikipedia. The DBPedia 

ontology is the heart of DBPedia. The ontology (at the 

time of 2022-08-29) covers 768 classes which form a 

subsumption hierarchy as Figure 2 (a) shows and are 

described by around 3000 different properties. The 

DBPedia ontology (at the time of 2022-08-29) currently 

contains about 4,828,418 instances.  

CaLiGraph [8] is a large semantic knowledge graph 

with a rich ontology compiled from the DBPedia ontology 

and Wikipedia categories and list pages, as Figure 3 (a) 

shows. The ontology is enriched with fine-grained value 

restrictions on its classes that are discovered with the 

Cat2Ax [9] approach. A large number of CaLiGraph's 

entities is extracted from Wikipedia listings through a 

combination of the ontological information and 

transformer-based extractors.  

Mapping Wikipedia categories and lists to DBPedia 

Ontology plays a critical role in many downstream tasks 

that include entity recognition, such as entity linking, 

entity typing, table column typing, relation extraction, 

question answering, and other KG-related tasks. For 

example, for the Wikipedia category 

“1999_science_fiction_novels”, if we assign the DBPedia 

type “Novel” to this category, then, given a table column 

of novel names such as “Vector_Prime” as Figure 1 shows, 

we can search the entities of the given column under the 

Wikipedia category or search the entity resources in the 

CaLiGraph ontology and assign the mapped DBPedia type 

to the matched entities as the table column typing.  



 

 

 

Figure 1 Illustration of matching column to CaLiGraph 

(Wikipedia category). [13] 

Lexical matching serves as the foundation for 

traditional ontology mapping solutions, which is often 

combined with structural matching. This gave rise to 

various traditional systems such as Cat2Ax [9]. Their 

lexical matching approach, however, only focuses  on the 

text's surface form, such as overlapping sub -strings and 

sharing a textual pattern, which is unable to capture word 

semantics. Lexical and structural matchings have recently 

been suggested to be replaced by machine learning; for 

instance, DeepAlignment [11] and OntoEmma [16] use 

word embeddings to represent classes and compute the 

similarity of two classes according to the Euclidean 

distance between their word vectors. However, these 

approaches either require extensive feature engineering 

that is ad-hoc and relies on great amounts of annotated 

examples for training, or they use classic non -contextual 

word embedding models like Word2Vec, which only learns 

a global (context-free) embedding for each word. 

Contrarily, pre-trained transformer-based language models 

such as BERT [2] and SimCSE [8] can learn robust 

contextualized text embeddings, and often just need a 

little amount of training resources to be fine-tuned. 

Although these approaches excel at many NLP tasks, 

ontology mapping has not yet received enough research 

attention from them. 

In this paper, we propose a new ontology mapping 

method that utilizes hierarchies of two knowledge graphs 

to do type inheritance and exploits semantic embeddings 

to construct training data for BERT fine-tuning to perform 

type prediction. Specifically, our method includes the 

following main steps: (1) Type inheritance, where we 

predict the DBPedia type based on heuristic rules, which 

provides training samples for distantly supervised learning. 

(2) Finding root words. In this paper, a root word is a 

single noun word which holds the most basic meaning of a 

long noun phrase. For example, for a given CaLiGraph 

class name “Opera house in Puerto Rico”, its root word is 

“house”. Here we do the POS tagging to find root words of 

CaLiGraph class names. (3) Finding root phrases. In this 

paper, a root phrase is defined as a root word with a prefix 

of n-words which have “compound”, “modifier of nominal” 

or “appositional modifier” dependency relations with the 

root word, and the part of speech (POS) of the words in 

root phrase must be “NOUN”. For example, for a given 

CaLiGraph class name “Opera house in Puerto Rico”, its 

root phrase is “Opera house”. A root phrase is a part of a 

CaLiGraph class name. Here we extend a root word to a 

root phrase utilizing Level Order Traversal on dependency 

parsing graph. (4) Root path search . In this paper, a root 

path is defined as the concatenation of the ancestor nodes’ 

root word which appears in the path from the given 

CaLiGraph class name node to the top of CaLiGraph’s 

hierarchy. For example, for a given CaLiGraph class name 

“Opera house in Puerto Rico”, its root path is “Venue 

Theatre House”. Here we search the ancestor nodes in the 

hierarchy of CaLiGraph and find their root words to 

generate the root path. (5) Semantic embedding generation 

for computing cosine similarities, where we utilize 

SimCSE to generate embeddings for constructing training 

data. (6) Training data augmentation, where we augment 

the training data for BERT fine-tuning by searching 

sibling nodes in the hierarchy of CaLiGraph. (7) BERT 

fine-tuning, using the training data, where a suitable 

pre-trained BERT model is chosen and fine-tuned. (8) 

Combining results, where Random Forests is u tilized to 

select the most plausible type.  

We evaluate our method on the CaLiGraph-DBPedia 

mapping task, and experimental results show that our 

method achieves superior results than the baseline model 

Cat2Ax in terms of Macro-Averaged F1 scores.  

 

2. Related Work 

 

2.1 CaLiGraph and Cat2Ax 

CaLiGraph is a large semantic knowledge graph with a 

rich ontology compiled from the DBPedia ontology and 

Wikipedia categories and list pages [8]. Since the first 

version released in Oct. 14, 2019, the latest (19th) version 

was released in Sept. 21, 2021. The ontology is enriched 

with fine-grained value restrictions on its classes that are 

discovered with the Cat2Ax approach. Through a 

combination of the ontological information and 

transformer-based extractors, many CaLiGraph instances 

are retrieved from Wikipedia categories and listings. 



 

 

Classes in CaLiGraph are derived from lists and categories 

in Wikipedia [13].  

The Cat2Ax [9] approach has four major steps: (1) 

Identify candidate category sets that share a textual 

pattern. (2) Find characteristic properties and types for 

candidate sets and combine them to patterns. (3) Apply 

patterns to all categories to extract axioms. (4) Apply 

axioms to their respective categories to extract assertions.  

2.2 Distant Supervision 

Machine learning methods basically need a collection of 

training data. Manually assigning labels to a collection of 

documents is a standard method for constructing training 

data. This method is time- and money-consuming, and if 

the corpus is vast, produced data are not for models to be 

trained.  

Another method to generating training data is distant 

supervision. Distant supervision is a learning scheme in 

which training samples are labeled automatically based on 

certain rules, suitable for situations where training data 

construction is costly. Distant supervision’s assumption 

for relation typing is that any statement that contains two 

entities that are involved in a relationship may refer to 

that relationship [12].  

Distant supervision for semantic typing is an extension 

of the paradigm used by [18] for utilizing WordNet to 

uncover hypernym (is-a) relations between entities, and is 

analogous to the application of poorly labeled data in 

bioinformatics [19][20], and in relation extraction which 

has no labeled data [12]. In our method for mapping 

entities to knowledge graph types, we apply distant 

supervision to discover mapping between CaLiGraph 

ontology classes and DBPedia types, based on manually 

constructed rules to generate initial mappings, then extend 

the mappings to siblings and descendants in the 

CaLiGraph hierarchy, that are predicted to share the same 

DBPedia type through dense representations. Based on the 

observations on Wikipedia category/list name structure 

and the hierarchy of CaLiGraph classes, we generate four 

rules for entity mapping between CaLiGraph nodes and 

DBPedia types. 

 

2.3 BERT pretraining and finetuning 

 BERT is a contextualized pretrained language model 

built on bidirectional transformer encoders [15]. Both 

pretraining and finetuning are part of its training paradigm. 

In pretraining, the input consists of a sequence that 

includes a special token [CLS], tokens from one sentence 

A, another special token [SEP], tokens from another 

phrase B that follows A. Every token's first embedding 

encodes its content, place in the sequence, and the phrase 

it belongs to (A or B). The model’s architecture consists of 

several sequential layers with the same design. The 

multi-head self-attention block, which is its core part, 

computes a contextual hidden representation of each token 

by taking into account the whole output of the preceding 

layer's sequence. The embeddings of the tokens from the 

final layer can be used as the input for a customized 

downstream layer. Pretraining is conducted by minimizing 

losses on two tasks: Next sentence prediction and masked 

language model. Contrary to traditional non-contextual 

word embedding techniques, which only give each token 

one embedding, BERT may identify many instances of the 

same token. In finetuning, customized downstream layers 

are fine-tuned based on a pretrained BERT model. For 

finetuning, it normally needs a relatively small numb er of 

epochs and data samples [2].  

 

2.4 Sentence embedding 

Sentence embedding techniques represent entire 

sentences and their semantic information as 

low-dimensional vectors. This helps the model in 

understanding the context, intention, and other nuances in 

the entire text. Sent2vec [17] utilizes word n -gram 

features to produce sentence embeddings. Arora et al. 

propose SIF in which sentences are represented as the 

weighted average of the word embeddings.  

Recently, Siamese networks and contrastive learning 

framework have been proposed for sentence embedding 

models. SimCSE [8] is a simple contrastive learning 

framework that advanced SOTA records on sentence 

embeddings. SimCSE employs unsupervised and 

supervised approaches. The unsupervised SimCSE takes 

an input sentence and predicts itself in a contrastive 

objective, with only standard dropout used as noise. In our 

work, we utilize SimCSE for calculating cosine 

similarities between candidate root phrases (or root path) 

and DBPedia types. 

 

3.  Problem definition 

Our goal is to predict DBPedia types of Wikipedia 

category and list names that are included in CaLigraph. 

We formulate this task as a multi -class classification task.  

Given a pair of ontologies of two knowledge graphs 𝐾 

and 𝐾′ , 𝑂 and 𝑂′, whose named class sets are 𝐶 and 

𝐶′, respectively, and the ontology class hierarchies 𝐻 and 

𝐻′ of two knowledge graphs. Then the ontology mapping 



 

 

problem is to determine a mapping M from  𝐶  to 

𝐶′ where M maps each class 𝑐 ∈ 𝐶  to a target class 𝑐′  ∈

𝐶  such that 𝑐′  represents the minimum concept that 

subsumes 𝑐.  Table 1 shows the symbols used in our 

method. 

Table 1. Symbol list.  

  

 

4. Methodology 

 

4.1. Model Structure 

In this paper, we propose a new ontology mapping 

method, which can predict the DBPedia type for a given 

CaLiGraph ontology class based on structural and 

semantic features. Figure 2 shows the framework of our 

method.  

Our model mainly contains two parts: (i) Type 

inheritance based on structural features and (ii) Classifier 

based on fine-tuning the pre-trained model BERT on 

semantic features. The training process mainly consists of 

the following five steps: (1) Do POS tagging of 

CaLiGraph ontology class names to find root words. (2) 

Extend each root word to a root phrase utilizing 

dependency parsing graph. (3) Search the ancestor nodes 

in the hierarchy of CaLiGraph and use ancestor nodes’ 

root words to generate root paths. (4) Utilize SimCSE to 

embed the root phrase, root path, DBPedia type into the 

same space. (5) Calculate the cosine similarity between 

the root phrase, root path and DBPedia type, respectively, 

and select the most similar DBPedia type according to 

cosine similarities as training data for BERT fine -tuning. 

(6) Augment the training data for BERT fine-tuning 

utilizing sibling nodes which share the same root phrase. 

(7) Use the augmented training data to fine-tune the BERT 

classifier. 

Finally, we utilize Random Forests to select the most 

specific DBPedia type among two results generated by 

Type Inheritance and BERT classifier as the final 

mapping. 

 

4.2. Type Inheritance 

Heuristic rules. We assume there exists a relation that 

there is a unique DBPedia specific type for each 

CaLiGraph node, thus this relation is a mapping. Based on 

this assumption, we construct the following four heuristic 

rules to do type inheritance. 

Rule 1: A DBPedia class node in the hierarchy of 

DBPedia may have an exactly identical class name in the 

hierarchy of CaLiGraph.  CaLiGraph uses DBPedia as an 

upper-level taxonomy and categorizes these rather general 

Symbol Description  

K Knowledge graphs 

O 
Ontology of 

knowledge graphs 

𝐶 = {𝑐1, 𝑐2,  … ,  𝑐𝑚} 
The set of named 

classes of O 

H 
Ontology class 

hierarchy 

𝑇 =  {𝑡1, 𝑡2,  … ,  𝑡𝑚} 
The set of DBPedia 

types 

Table 1 Symbols of problem. 

Figure 2 Overall structure of our proposed model.  



 

 

types in DBPedia into more specific types. We check an 

exactly matching CaLiGraph node in the hierarchy for 

every DBPedia node. Figure 3 shows an example of Rule 

1. 

 

Figure 3. Example of Rule 1 

Rule 2: Inheritance. If a CaLiGraph node c is mapped to 

a DBPedia type t, then c’s descendants are also mapped to 

the same type t. So, if a DBPedia node has an exactly 

matching CaLiGraph node, then its descendant  

CaLiGraph nodes can also be mapped to the DBPedia node. 

For example, as Figure 4 shows,  the CaLiGraph node 

“20th-century_American_women_politician” has an 

ancestor node “Politician”, and this ancestor node has an 

exactly matching DBPedia node “Politician”, so we can 

assign this DBPedia type “Politician” to the CaLiGraph 

node “20th-century_American_women_politician”. 

However, a descendant may be inheriting from multiple 

ancestor nodes, so this rule will give candidate types but 

not a unique type, as Figure 5 shows. 

Figure 4. Example of Rule 2 

Figure 5. Example of multiple inheritance 

Rule 3: The depth of DBPedia node in the hierarchy of 

DBPedia reflects the specificity degree of the DBPedia 

node. For example, as Figure 6 shows, the depth of 

DBPedia node “Politician” is larger than the depth of 

DBPedia node “Person”, and we can say the type 

“Politician” is more specific than the type “Person”.  

Figure 6. Example of Rule 3 

Rule 4: The root word of a CaLiGraph node has 

significant semantic similarity with a DBPedia type. For 

example, as Figure 7 shows, the root word of the 

CaLiGraph node “Cuban expatriate sportsperson in the 

United States” is “sportsperson” which is semantically 

similar with its DBPedia type “Athlete”. 

Figure 7. Example of Rule 4  

Type Inheritance, Ranking, Selecting.  

Given a CaLiGraph node, we first judge whether there 

is a path between the CaLiGraph node and also judge 



 

 

whether there exists a CaLiGraph node in the hierarchy of 

CaLigraph exactly matching with the DBPedia node. If the 

path exists, we add this DBPedia node to the candidate 

type list of the given CaLiGraph node.  

Then we define a scoring function for ranking candidate 

types: if the candidate type has a score proportional to t he 

depth in the CaLiGraph hierarchy, denoted as S_depth, and 

if the candidate type contains the root word of the given 

CaLiGraph node, we give it a score denoted as S_root, and 

we rank the candidate types by the combination of two 

scores as follows: 

𝑆𝑐𝑜𝑚 = 𝛼 ∗ 𝑆𝑑𝑒𝑝𝑡ℎ + (1 − 𝛼)𝑆𝑟𝑜𝑜𝑡 

Here, 0 ≤ 𝛼 ≤ 1 is a hyperparameter. Finally, we select 

the DBPedia type having the highest score as the result to 

be assigned to the given CaLiGraph node.  

 

4.3. Training data construction 

POS tagging.  SpaCy is a POS tagging and syntactic 

dependency parse tool [24]. We utilize the spaCy 

processing pipeline to do POS tagging to find the root 

word of a CaLiGraph node. For a long noun phrase, the 

root word holds the most basic meaning of the whole 

phrase. 

Firstly, to generate a Doc object, spaCy tokenizes the 

text when we call nlp on a paragraph of text. Next, the Doc 

object is processed by a few steps which can be seen as the 

processing pipeline. Utilized by the trained pipelines, the 

pipeline commonly contains a tagger, a parser , a 

lemmatizer and an entity recognizer. Every component in 

the pipeline returns the processed Doc, which is then 

forwarded to the following component. Figure 8 shows the 

example of POS tagging.  

Figure 8. Example of POS tagging 

Extend the root word to root phrase 

Dependency parsing, one of the views of linguistic 

structure, refers to examining the dependencies between 

the words of a sentence to analyze its grammatical 

structure. Based on this, we can extract a dependency of a 

sentence that represents its grammatical structure and 

defines the relationships between "head" words and words, 

which modify those heads.  

Sometimes only the root word cannot fully represent the 

semantic features of CaLiGraph class names. For example, 

for the CaLiGraph class name “South Korean football club 

season”, the root word is “season”, but it is hard for us to 

assign a plausible DBPedia type to the CaLiGraph node 

only according to the root word . However, for the root 

phrase "football club season”, we can easily find a 

plausible DBPedia type “SoccerClubSeason”.  

For the above reason, we extend a root word to a root 

phrase utilizing Level Order Traversal on the dependency 

parsing graph. The process includes the following main 

six steps:  

Step1: Tokenize the CaLiGraph class name and create 

an index for each token.  

Step2: Find a root word based on POS Tagging.  

Step3: Draw the dependency parsing graph based on the 

root word. 

Step4: Do level order traversal on the dependency 

parsing graph and judge if the token satisfies a condition. 

If it satisfies the condition, add this token to the 

candidate_token_list.  

Step5: After the level order traversal, sort the 

candidate_token_list according to the index created 

before. 

Step6: Concatenate the sorted tokens in the 

candidate_token_list as the root phrase.  

Figure 9 Shows an example of Level order traversal 

algorithm using FIFO queue on a dependency analysis 

graph. 

 

 Figure 9. Example of dependency analysis graph 

Another Root phrase extraction strategy 

However, while enriching semantic information, root 

phrases sometimes bring noise. Therefore, we propose a 

different strategy for root phrase extraction. We extract 

different lengths of a root phrase as root phrase 



 

 

candidates. 

For example, “American football team in Finland” is a 

class in CaLiGraph. After we use dependency parsing, we 

can obtain the dependency relationship  in Figure 10. 

 

Figure 10. “American football team in Finland” after 

dependency parsing.  

In the diagram, the “team” forms the head of the above 

sentence. The dependency relationship between any two 

words is represented with arrows. For instance, “American” 

is an adjectival modifier of root word “team”. In this paper, 

we start from the root word, then traverses the left and 

right subtrees of the root word according to the 

dependency tree. The words in the left and right subtrees 

are added to the root phrase candidate set with the root 

word. In the above sentence, the left subtrees of the root 

“team” are “American” and “football”, and the right 

subtree is the preposition “in”. We first add the root word 

“team” in the root phrase candidate set. Then we combine 

“American” and “team” and add the phrase “American 

team” to the candidate set, as is “foo tball”. Since 

“American” and “football” are directly modifying “team”, 

we should combine these three words (“American football 

team”) as a root phrase. For the left subtree, “in” is a 

preposition which has no sense, and we should not add it 

to the root phrase candidate set, but “in” and the following 

object “Finland” together form a phrase which modifies 

“team”. Thus, “team in Finland” should be added in the 

root phrase candidate set. Finally, for this sentence, the 

root phrase candidate set contains “team”, “American 

team”, “football team”, “American football team” and 

“team in Finland”. For each CaLiGraph class, we extract 

root phrases as described above.  

Using SimCSE to generate node representation. 

S en t en c e  e m b e d d in g  m o d e l s  c ap tu r e  s e m a n t i c  

r e l a t ed n e s s  v i a  t h e  d i s t an c e s  b e t w e e n  th e  

c o r r e s p o n d in g  v e c to r  r e p r e s e n t a t i o n s  w i t h i n  t h e  

sh a r e d  v e c to r  sp a c e .  B e c a u s e  th e r e  i s  a  h ig h  s e m a n t i c  

s i m i l a r i t y  b e t w e e n  ro o t  w o r d s  ( p h r a s e s )  an d  

D B P ed i a  t y p e s ,  w e  u s e  a  s e n t e n c e  e mb e d d in g  m o d e l  

t o  r an k  t h e  c a n d id a t e  t y p e s  b y  m e a s u r in g  t h e i r  

d i s t an c e  to  t h e  ro o t  w o r d s  (p h r a s e s ) .  R e c e n t ly ,  t w o  

s e n t e n c e  e m b ed d in g  m o d e l s  BE R T  an d  S i m C SE  c a t c h  

a t t en t io n  b e c a u s e  o f  t h e i r  g o o d  p e r fo r m a n c e .  

Ho w e v e r ,  u s in g  n o n - f i n e tu n ed  B E R T s en t e n c e  

v e c t o r s  d i r e c t ly  fo r  u n s u p e r v i s e d  s e m a n t i c  

s i m i l a r i t y  c a l c u l a t io n  h a s  p o o r  p e r fo r m a n c e .  Th e  

s i m i l a r i t y  o f  B E RT  s en t e n c e  v e c to r s  o f  an y  t w o  

s e n t e n c e s  i s  q u i t e  h ig h ,  w h er e  o n e  o f  t h e  r e a s o n s  i s  

t h e  n o n l in e a r i t y  a n d  s in g u l a r i t y  o f  i t s  v e c to r  

d i s t r i b u t io n .  

S i m C S E  r e f l e c t s  t h e  s e m a n t i c  r e l a t ed n e s s  b e t w e e n  

p h r a s e s  wh e n  u s i n g  s i m i l a r i t y  m e a s u r e s  o n  t h e  

c o r r e s p o n d in g  v e c to r s .  T h e  u n s u p e rv i s e d  S i m CS E  

m o d e l  i s  g r e a t l y  o u tp e r fo r m in g  p r ev io u s  S O T A  

m o d e l s .  

By  o b s e r v i n g  C a L i Gr a p h  n o d e  c l a s s  n a m e s ,  w e  

f in d  th a t  t h e  r o o t  wo rd  o f  a  c l a s s  n a m e  h a s  a  h ig h  

s e m a n t i c  s i m i l a r i t y  t o  i t s  co r r e s p o n d in g  D B P ed i a  

t y p e .  H o w ev e r ,  j u s t  a  r o o t  wo r d  i s  n o t  e n o u g h ,  s in c e  

th e  r o o t  wo r d  o n ly  i s  l a c k i n g  co n t ex tu a l  i n f o r m a t i o n .  

So ,  w e  s e a r c h  th e  p a th  f r o m C a L i Gr a p h  n o d e  t o  t h e  

to p  o f  t h e  h i e r a r c h y  a n d  d o  P O S t a g g in g  f o r  t h e s e  

a n c e s to r  n o d e s  in  t h e  p a th  t o  g e n e r a t e  a  ro o t  p a t h  to  

c a p t u r e  c o n t ex t s .  H o w ev e r ,  so m e  a n c e s to r  n o d e s  in  

t h e  to p  o f  h i e r a r ch y  a r e  t o o  g en e r a l ,  s o  t h a t  m a k in g  

th e m  m e a n i n g l e s s .  W e  s e t  a  m a x i mu m  t o k e n  n u m b e r  

t o  d r o p  m e a n i n g l e s s  ro o t  wo r d s .  In  t h i s  p a p e r  w e  s e t  

t h e  m a x i mu m  t o k e n  n u mb e r  a s  3  a s  a  b o u n d a ry .  I f  t h e  

l en g t h  o f  a  r o o t  p a th  i s  l a r g er  t h a n  t h i s  b o u n d a ry ,  w e  

d r o p  th e  ro o t  w o rd  b ey o n d  th e  b o u n d a ry .  I f  t h e  

l en g t h  o f  t h e  ro o t  p a t h  i s  s m a l l e r  t h a n  th e  b o u n d a r y ,  

k e ep  i t  a s  i t  i s .  A s  F ig u r e  1 1  sh o w s ,  t h e  ro o t  p a th  o f  

t h e  C a L i Gr a p h  p a th  i s  “ V e n u e  Th e a t r e  H o u s e ” ,  t h e  

t o k e n s  “T h in g ”  an d  “ B u i l d in g ”  a r e  d r o p p ed  b e c a u s e  

th e y  a r e  b e y o n d  th e  b o u n d ar y .  

 

Figure 11. Example of root path generating  

In this paper, we utilize the unsupervised SimCSE 

model to generate vectors for both root phrases and root 

paths of CaLiGraph nodes and DBPedia types. 

Cosine similarity computing. The cosine similarity 

between a root phrase of CaLiGraph node embedding 

𝑉𝑟𝑜𝑜𝑡_𝑝ℎ𝑟𝑎𝑠𝑒  and a DBPedia node embedding 𝑉𝐷𝐵𝑃  is 



 

 

calculated for ranking, as follows:  

𝑆𝑖𝑚(𝑉𝑟𝑜𝑜𝑡_𝑝ℎ𝑟𝑎𝑠𝑒 ,  𝑉𝐷𝐵𝑃) = 𝐶𝑜𝑠(𝑉𝑟𝑜𝑜𝑡_𝑝ℎ𝑟𝑎𝑠𝑒 ,  𝑉𝐷𝐵𝑃)

=
𝑉𝑟𝑜𝑜𝑡_𝑝ℎ𝑟𝑎𝑠𝑒
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ × 𝑉𝐷𝐵𝑃

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

|𝑉𝑟𝑜𝑜𝑡_𝑝ℎ𝑟𝑎𝑠𝑒
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| × |𝑉𝐷𝐵𝑃

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
 

The cosine similarity between the root path of 

CaLiGraph node embedding 𝑉𝑟𝑜𝑜𝑡_𝑝𝑎𝑡ℎ and DBPedia node 

embedding 𝑉𝐷𝐵𝑃 is calculated in the same way. The cosine 

similarity between root phrase and DBPedia node is 

𝑆𝑖𝑚(𝑉𝑟𝑜𝑜𝑡_𝑝ℎ𝑟𝑎𝑠𝑒 ,  𝑉𝐷𝐵𝑃) , the cosine similarity between a 

root path and DBPedia node is denoted as 

𝑆𝑖𝑚(𝑉𝑟𝑜𝑜𝑡_𝑝𝑎𝑡ℎ,  𝑉𝐷𝐵𝑃) . We calculate the weighted cosine 

similarity, with weighting factor 𝛽,  as: 

𝑆𝑖𝑚𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 𝛽 ∗ 𝑆𝑖𝑚(𝑉𝑟𝑜𝑜𝑡_𝑝ℎ𝑟𝑎𝑠𝑒 ,  𝑉𝐷𝐵𝑃) + (1 − 𝛽)

∗ 𝑆𝑖𝑚(𝑉𝑟𝑜𝑜𝑡_𝑝𝑎𝑡ℎ,  𝑉𝐷𝐵𝑃) 

We rank DBPedia types according to the weighted 

cosine similarity scores and select the DBPedia type which 

has the highest weighted cosine similarity to the given 

CaLiGraph node. 

 

4.4. Training data augmentation 

 In the hierarchy of CaLiGraph, nodes sharing the same 

parent node are regarded as sibling nodes. The sibling 

nodes which share the same root phrase are likely to have 

the same DBPedia type, therefore we search sibling nodes 

of the CaLiGraph nodes in the training data constructed 

before, to do training data augmentation. The 

augmentation mainly contains the following three steps: (1) 

Search all sibling nodes of a CaLiGraph node in the 

hierarchy of CaLiGraph. (2) For each sibling node, judge 

whether it contains the root phrase of the given CaLiGraph 

node. If so, we assign the same DBPedia type to the 

sibling node. (3) Add the sibling node-DBPedia type pairs 

to the training data as data augmentation. Figure 14 shows 

an example of augmentation: We have assigned the 

DBPedia type “BasketballPlayer” to the CaLiGraph class 

name “Virginia Tech Hokies women’s basketball player” 

utilizing the methods introduced before, then we search 

sibling nodes in the hierarchy and find three sibling nodes 

as shown in Figure 14. The root phrase of sibling node 

“Penn State Nittany Lions softball player” is “softball 

player” which is different from the root phrase of 

“Virginia Tech Hokies women’s basketball player”, so we 

drop it, and other two sibling nodes share the same root 

phrase “basketball player” with CaLiGraph class name 

“Virginia Tech Hokies women’s basketball player.” Thus 

we assign the same DBPedia type “BasketballPlayer” to 

the sibling nodes as augmentation.  

 

4.5. BERT Fine-tuning 

Given sets of pairs of CaLiGraph nodes and DBPedia 

type nodes generated by the previous method based on 

semantic features, a pre-trained BERT model with a 

downstream classifier is finetuned on the objective of the 

cross-entropy loss. A pair of a tokenized CaLiGraph node 

and DBPedia node label with a maximum length of 85 is 

an input sequence for the BERT model. The classifier has 

a linear layer (with dropout) that receives the embedding 

of the [CLS] token from the outputs of the final layer of 

BERT as input, and before applying the output softmax 

layer, and the output is convertd into a 2-dimensional 

vector. The Adam algorithm is used to perform the 

optimization. The final output is vectors of a probability 

distribution over the DBPedia types for each CaLiGraph 

node. 

 

4.6. Result combination 

 We can obtain two DBPedia type candidates generated 

by Type Inheritance and BERT Classifier introduced 

before. We utilize the machine learning method Random 

Forests to select an optimum one.  

Numerous classification trees are grown in Random 

Forests. Here we denote a CaLiGraph node embedding 

representation as A, the predicted DBPedia type 

embedding representation by Type Inheritance as B, the 

predicted DBPedia type representation embedding by the 

BERT classifier as C. Then We utilize SimCSE to do the 

concatenation of the embedding [A; B] as 𝐸1 and [A; C] as 

𝐸2, and use 𝐸1 and 𝐸2 as the input vectors. We refer to 

each tree's categorization as a “vote” for that class. The 

categorization with the highest votes is selected by the 

forest (over all the trees in the forest). Each tree is grown 

as follows: 

 (1) If the number of cases in the training set is N, 

sample N cases at random but with replacement, from the 

original data. This sample will be the training set for 

growing the tree.  

 (2) We use the dimension of the embeddings as M 

input variables, a number m << M is specified such that at 

each node, select m variables randomly out of M and the 

best split on these m is utilized to split the nodes. 

Throughout the growth of the forest, m is maintained at a 

fixed value. 

 (3) Every tree is developed to its full potential. 

Pruning is not done. 

 To construct training data for Random Forests training, 



 

 

we annotate labels to a small subset of CaLiGraph nodes 

by human annotation. Finally, we enter the training set 

into Random Forests to obtain the final prediction.  

 

5. Experiments 

In this section, we first introduce datasets used in our 

work, followed by evaluation metrics. Then, we present 

and discuss our experimental results on the  

CaLiGraph-DBPedia mapping task. 

 

5.1. Datasets 

Dataset construction.  For BERT classifier training, we 

first randomly sample a small subset of all CaLiGraph 

nodes as the test set, and we annotate the golden label to 

the CaLiGraph nodes in the test set by human annotation 

as the ground truth. Then we randomly sample a subset of 

all CaLiGraph nodes as the training dataset, and we 

checked whether the CaLiGraph node in the test set appear 

in the training dataset. If it appears, we remove it from the 

training dataset to make sure that the CaLiGraph nodes in 

the training dataset are disjoint with the CaLiGraph nodes 

in the test set. Then we split the training dataset to 80% as 

a training set and 20% as a validation set.  

For Random Forests training, we use the same test set 

constructed above as the test set for Random Forests, and 

we randomly sample a small subset of CaLiGraph nodes as 

the training set for Random Forests training. We also 

check whether each CaLiGraph node in the test set appears 

in the training set. If the node appears, we remove it from 

the training set.  

Table 2. shows statistics of the dataset . 

 

5.2. Evaluation Metrics 

W e  ev a lu a t e  t h e  m o d e l  p e r fo r m a n c e  

o n  t h e  C a L i Gr a p h - D B P e d i a  m a p p i n g  t a sk .  W e  u s e  

M a c ro - Av e r a g e d  P r e c i s i o n ,  M a c ro - a v e r ag e d  r e c a l l ,  

a n d  M a c r o - Av e r a g ed  F1  a s  m a in  e v a l u a t i o n  m e t r i c s .  

Th e  fo r m u l a s  fo r  c a l cu l a t i n g  th e s e  m e t r i c s  a r e  a s  

fo l lo w s :  

𝑃 =
|𝑀𝑜𝑢𝑡 ∩ 𝑀𝑡𝑒𝑠𝑡  |

|𝑀𝑜𝑢𝑡|
(1) 

𝑅 =
|𝑀𝑜𝑢𝑡 ∩ 𝑀𝑡𝑒𝑠𝑡|

|𝑀𝑡𝑒𝑠𝑡|
(2) 

𝐹1 =  
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
(3) 

 

5.3. Experimental Settings 

For the BERT classifier, we choose the pretrained 

bert-base-multilingual-cased models. The details of 

training are that epoch = 10, the training batch size = 16, 

the input max length = 85, learning rate = 1e-5. 

For the Random Forests, n_estimators (number of 

classification trees) = 2000, criterion as gini, 

max_features = sqrt(n_features).  

 

5.4. Experimental Results and Analysis 

Table 3 shows the results of the experiments. 

From the results we can see that utilizing the 

combination of semantic feature and structural feature to 

predict DBPedia types for CaLiGraph nodes outperforms 

the method which only utilizes the semantic feature to 

fine-tune the BERT Classifier. The reason may be that we 

use root words to represent meaning of each CaliGraph 

node, but  only the root word cannot accurately represent  

the semantic feature of the CaliGraph node and cause  

Dataset 

For BERT Classifier For Random Forests 
Number of test 

set 

Number of training 

set 

Number of validation 

set 

Number of training 

set 
500 

CaLiGraph-DBPe

dia 
142758 35689 5186 

Table 2 Statistics of dataset.  



 

 

 misunderstanding and errors on predicting the DBPedia 

type. Therefore, to contain more useful information, we 

extend root words to root phrases to better represent the 

semantic feature of  CaLigraph nodes. From the result we 

can see that the root phrase method outperforms the root 

word method. However, some root phrases will bring  

meaningless words which can be seen as noise. To reduce 

the influence of noise, we further tried different length of 

root phrases and select the optimum one. 

We also do training data augmentation to increase 

training data. Although this augmentation can amplify 

noise in the orignal training data, the result shows an 

improvement on F1 score. 

 

5.5. Analysis on Errors and Difficulties  

After checking the experimental results, we find that 

our model’s final prediction has about 10% rate of errors. 

We compared predicted DBPedia types with golden labels 

of the error CaLiGraph nodes,  and find that there are 

mainly three kinds of CaLiGraph class names  which are 

difficult to predict DBPedia types: (1) Proper noun. 

Certain CaLiGraph class names only have proper noun, 

this make us hard to find the corresponding DBPedia type. 

For example, for the CaLiGraph node 

“San_Francisco_Deltas_player”, San Francisco Deltas is 

an American professional soccer team, but only by class 

name we cannot find this information, so the predicted 

result of our model is “AthleticsPlayer,” which is not 

specific enough. (2) Class name is too short. A number of 

CaLiGraph class names are too short to have enough 

information for prediction. For example, the CaLiGraph 

class name “Molluscicide” is a kind of pesticide, but 

according to semantic similarity, the predicted result given 

by our model is “Mollusca”, which is wrong. (3) Part of 

speech error. According to the semantic feature of class 

names, we sometimes obtain a semantically related 

prediction result but its part of speech is not matching 

with the node. For example, for the CaLiGraph node 

“1970s crime”, the most semantically similar DBPedia 

type is “Criminal”, but the crime is an event, while 

criminal is a person, which is obviously  wrong. 

Due to the above errors, we need to find more 

information such as Wikipedia category pages which can 

indicate corresponding DBPedia types. 

6. Conclusion and Future Work 

In this paper, we proposed a novel ontology mapping 

Models 
Macro-Averaged 

Precision 
Macro-averaged recall Macro-Averaged F1 

Cat2Ax 0.593 0.607 0.599 

SimCSE+BERT 

(root word) 
0.589 0.608 0.588 

SimCSE+BERT 

(root phrase) 
0.649 0.621 0.635 

SimCSE+BERT 

(root phrase with 

different length) 

0.726 0.708 0.707 

SimCSE+BERT 

(root phrase and sibling 

nodes) 

0.665 0.633 0.649 

Type Inheritance 

+SimCSE+BERT 

(root word) 

0.835 0.826 0.830 

Type Inheritance 

+SimCSE+BERT 

(root phrase and sibling 

nodes) 

0.884 0.891 0.883 

Table 3 Experiment results.  

Model SimCSE+BERT (root word) uses the root word of CaLiGraph class names to compute cosine 

similarity for training data construction. Model SimCSE+BERT (root phrase) extends the root word to 

root phrase to compute cosine similarity  for training data construction. Model SimCSE+BERT (root 

phrase and sibling nodes) uses the root phrase for training data construction and searches the sibling 

nodes for training data augmentation. Model Type Inheritance+SimCSE+BERT (root word) combines 

the results of type inheritance and BERT classifier utilizing root word.  Model Type 

Inheritance+SimCSE+BERT (root phrase and sibling nodes) combines the results of type inheritance 

and BERT classifier utilizing root phrase and sibling nodes for data augmenta tion. 



 

 

method based on structural and semantic features. We 

construct four heuristic rules to do  Type Inheritance 

based on the hierarchies of CaLiGraph and DBPedia. We 

use spaCy processing pipeline to do POS tagging to find 

root words of CaLiGraph nodes. Then we utilize a 

dependency parsing graph based on root word s and do the 

Level Order Traversal by FIFO queue on the dependency 

parsing graph to extend the root word to a root phrase. We 

use SimCSE to generate embeddings of a root phrase and 

root path of CaLiGraph nodes and compute the cosine 

similarity between them and DBPedia types, and rank the 

DBPedia type candidates and select the most similar one 

to construct the training data for BERT Classifier 

finetuning.  We augment the training data by searching 

sibling nodes in the hierarchy of CaLiGraph. We further 

combine the predictions of Type Inheritance and BERT 

Classifier to generate the final result by Random Forests. 

Our experiments show that our method is outperforming 

Cat2Ax on the CaLiGraph-DBPedia mapping task. 

In future work, we intend to apply masked language 

model to predict phrases which indicate the DBPedia types 

and design a ranking method to rank the candidate 

DBPedia types. Furthermore, for a small part of 

CaLiGraph nodes, we cannot predict specific DBPedia 

types only by class names,  because class names are 

sometimes too short to contain much useful information. 

Therefore, we try to find more information besides the 

class names, such as looking up useful keyphrases in 

Wikipedia categories and list pages . 
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