
DEIM Forum 2023 1b-9-1

Fine-grained Column Type Annotation Using Multiple Knowledge

Graphs

Shen SHUYANG† and Mizuho IWAIHARA‡

† ‡Graduate School of Information, Production and Systems, Waseda University

2–7 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808–0135 Japan

E-mail: †shua@akane.waseda.jp, ‡iwaihara@waseda.jp

Abstract Tabular data contain rich semantic information. However, identifying and interpreting tables are still

challenging. Particularly, we look into the column type annotation task as part of table interpretation. Although

deep-learning models based on pretrained language models have been achieving state of the art performance in re-

cent years, these column typing results are still not successful in predicting specific types, because of the limitation

on re-lying only on pretrained language models, which can be improved by incorporating multiple knowledge graphs

with extended ontology. In this paper, we propose a hybrid method which combines the advantage of deep-learning

and linguistic feature approaches over knowledge graphs. We utilize large-scale knowledge graph CaLiGraph over

Wikipedia lists and categories to create a fine-grained mapping to the target knowledge graph of DBPedia. Our

results were evaluated on the fine-grained subset of WikiTable dataset, and shows advantages on granularity over

the state-of-art model.

Key words Column Type Annotation, Deep-learning，Knowledge Graph, Fine-grain

1 Introduction

Web tables (relational HTML table from the Web) are

a kind of tabular data source which can be accessed over

the Internet. Twelve years ago, Caferella et al. [4] estimated

that the Web contains around 14.1 billion HTML tables. It

is convincing that an abundant source of tabular knowledge

is currently available on the Semantic Web. To fully under-

stand tabular data, table interpretation solutions with LOD

(Linked Open Data) are necessary.

Column type annotation [1] [7] [5] [23], as an important task

of table understanding, is the process of identifying and an-

notating the data type of each column in the given tabular

dataset. It is important in data processing because correctly

identifying the data type of each column is crucial for many

downstream tasks, such as triplet extraction and database

update [22]. If a column is mistakenly annotated with an-

other type, any statistical analysis or machine learning mod-

els that are applied to the data may produce incorrect or bi-

ased results. Therefore, accurately identifying the data types

of columns is an important step in preparing and cleaning

data for further processing.

LOD such as DBpedia [15], YAGO [13] creates an ontol-

ogy by defining a series of categories, properties, and rela-

tions between the concepts, data, and entities to establish a

cross-domain knowledge graph, which is used as background

knowledge inventory for a wide range of applications, includ-

ing web search, natural language understanding, data inte-

gration, and data mining. It is also requested to be as com-

plete, correct, and up-to-date as possible to finish a mapping

from the external contents to the concepts or entities.

The English version of DBpedia [15] describes 6.2M entities

using 1.1B triples, including 1.6M persons,800K places, 480K

works (e.g., films, music albums), 267K organizations, 293K

species, and 5K diseases. Besides, the DBpedia Ontology is

a shallow, cross-domain ontology, which has been manually

created based on the most commonly used infoboxes within

Wikipedia. The ontology currently covers 685 classes which

form a subsumption hierarchy and are described by 2,795

different properties, which maintains hierarchical structure

at the semantic level, and has been widely used in a variety

of tasks and fields.

CaLiGraph [10] [9] [11] is a knowledge graph that uses the

encyclopedic structure of Wikipedia to derive its fine-grained

type ontology and extract huge amounts of novel entities.

Additionally, it provides restrictions for many of the derived

types to further refine the contained entities. The ontology

currently covers 1,061,598 types, which offer way too much

detailed information than DBpedia [15], acting as a reliable

external knowledge graph other than DBpedia.

Column type annotation can be done manually, but it is of-

ten time-consuming and error-prone. As a result, automated

(a) (b)

Figure 1: Two examples of vertical tables annotated semantic types above each column. (a) is a vertical table with multiple

columns, and (b) is one single column with two different types annotation.

approaches have been developed to accurately and efficiently

annotate column types. These approaches can range from

simple rule-based systems to more complex machine learning

based methods. Rule-based systems [1] [17] [12] [21] [24] often

utilize information from various knowledge bases and make

the final ranking and predicting part through ensemble of

features. On the other hand, machine learning based meth-

ods [28] [5] [25] [7] [23] focus on extracting semantics with lim-

ited table data (like only the surface contents of tables given).

Besides, most datasets [7] [29] [6] for column type annota-

tion have overlap among the given types (like Director and

Artist).

We focus on the WikiTable dataset [7], which is a collec-

tion of tables collected from Wikipedia. According to [7],

the type and relation labels are from FreeBase [2] and are

obtained by aggregating entity links attached to the original

tables. However, FreeBase has been shut down years ago,

and the API would not be supported anymore, which makes

it difficult to access the metadata with FreeBase schema to

obtain fine-grained typing results. To this end, we propose

to utilize multiple knowledge graphs like DBpedia [15] and

CaLiGraph [10] [9] [11] to harvest fine-grained types.

This paper attempts to show a hybrid model which is de-

signed to exploit the advantages of deep-learning and knowl-

edge graphs to perform column type annotation on tabular

data. As shown in Figure 1, there is one column in table

(b) that has values identical to table (a), and we consider

the task to assign the column type of (b) as fine-grained

as possible to capture the specific semantics of the target

table. It is difficult to improve granularity of column and

obtain fine-grained semantic types in (a). However, the en-

tities in cells of each column can bring extended informa-

tion from corresponding knowledge graphs, thus leading to

more fine-grained column type annotation in (b) (in this case,

basketball team is more specific and thus appropriate than

sports team). The main idea is to retrieve fine-grained types

from multiple knowledge graphs by utilizing deep represen-

tations of the contents of tables. We choose the backbone of

DODUO [23], which proposes a shared parameter encoder,

and extend the deep-learning part by a hybrid model and im-

prove its performance with a contrastive learning approach.It

should be noted that our approach is agnostic to pretrained

language models, so different pre-trained language models

can be utilized in the deep learing part and knowledge graph

part for fine-tuning and embedding generation, respectively.

Our main contributions can be summarized below:

1. Improved the deep-learning part [23] by adding a con-

trastive learning module whose training samples are gener-

ated according to the results on confident samples in each

epoch, which can separate types having overlapping seman-

tics with other types.

2. Use an unsupervised method on embeddings over

type texts and interpretable linguistic features to accom-

plish mapping between ontologies of multiple knowledge

graphs. Combine the advantage of deep-learning and knowl-

edge graphs, building a more interpretable, robust, and fine-

grained method to cope with the challenge of column type

annotation.

3. Create a fine-grained WikiTables dataset. Since

TURL WikiTables adopts both fine-grained and coarse-

grained types, which is a multi-label dataset. To further

evaluate the perform on column type annotation, we manu-

ally curate part of WikiTable dataset and choose one most

specific type out of the given multiple types as fine-grained

WikiTables dataset. Evaluation is performed on both TURL

WikiTables and fine-grained WikiTables dataset.

The remainder of this paper is organized as follows. In Sec-

tion 2 we introduce the related work we investigated. The

problem is formulated in Section 3 and the method proposed

to annotate column type is specifically explained in Section 4.

Then, we evaluate our hybrid model with a subset of TURL

WikiTables in Section 5 and make a conclusion in Section 6.

2 RELATED WORK

Column type annotation is a kind of named-entity recog-

nition, which is a subtask of table interpretation that aims

to locate or categorize named entities in tabular data into

pre-defined concepts. While column type annotation focuses

on annotating the header of the table, entity linking is aim-

ing to link all the mentions in columns (except the headers)

of a table to or are instantiated from ground-truth concepts

in a knowledge graph.

Approaches based on Markov random field model [17] [1]

[14] are first introduced into semantic table interpretation by

Limaye et al. [17]. In this method, Iterative Classification Al-

gorithm (ICA) [8] and knowledge graphs are used with latent

variables and some manually constructed potential functions

based on the structural features of tables. These potentials

could connect the components in the tables， jointly con-

structing a maximal objective function to describe the table

interpretation problem. Such methods based on the Markov

random field model were improved by a method proposed

by C.S. Bhagavatula et al. [1] mainly by introducing more

potential functions and more prior knowledge. Accordingly,

the improved method which exhausts the background knowl-

edge is computationally expensive to realize better perfor-

mance. Let alone the memory limit for storing that amount

of knowledge. Embedding was later introduced by Takeoka

et al. [25] to exploit the semantic information with the texts

and terms, which addressed the issue of computational costs

by translating the knowledge in knowledge graph into vector

representation instead of searching through the knowledge.

Compared with the table interpretation method based on

Markov random field, which disambiguates all background

knowledge on the knowledge graph at once, the methods

based on traditional feature engineering and queries are more

robust and applicable. Among them, the most important

feature engineering and query methods are the candidate en-

tity search that relies on a database, the context modeling

of table contents, and extension of information sources [3].

G. Hignette et al. [12] interprets tables through feature con-

struction based on similarity, scoring function and database

search. Several researches [21] [24] [26] emphasize the influ-

ence of database background knowledge on table interpre-

tation, trying to interpret tables by exploiting the ontology

and search methods of LOD. Table augmentation method is

used in [12], [16] to improve the quality of table interpretation

for these small web tables. Several researches have improved

the processing flow [30], [31], using a part of the contents of

a table as a supplementary explanation to the rest, making

full use of the characteristics of the disordered structure of

tables.

There are also works focused on the improvement of word

embedding methods [18] [5] [7] [23], and a number of novel

word embedding processes have been proposed, and state-

of-art results have been achieved in the evaluation of Chen

et al.’s work [5]. Among these methods, the word embed-

ding model based on Word2Vec [19] is the most commonly

used. But recent work [7] [23] are adopting transformer [27]

based models.TURL [7] is a transformer-based pretraining

framework for table interpretation. Pre-training contextu-

alized representations of table contents are learned in an

unsupervised way during pre-training and later applied to

different tasks during finetuning phase. Moreover, Suhara

et al. [23] propose shared parameter model DODUO, which

allows different training tasks to fine-tune the same encoder

together, capturing various levels of semantics and generaliz-

ing the model. This framework also allows different datasets

to be applied to fine-tune the same pre-trained language

model,extending the range of knowledge.

3 PROBLEM FORMULATION

This section gives mathematical formulation of our task.

Assuming a target table gives column names and cell val-

ues that can be linked to its metadata, but without other

information such as the table title, caption and contexts.

With this restriction, the goal of the proposed task is to pre-

dict semantic types of the table columns and make them as

fine-grained as possible. Here the target semantic types are

chosen from the DBPedia ontology. With the construction

schema of the WikiTable dataset, the problem is therefore

formulated as a classification task, annotating one of the pre-

defined semantic types on the target column.

Assume that a table T which contains r rows of content

cells (excluding the row of table headers) and c columns are

to be interpreted. Symbol mij is called a mention, which

denotes the cell content of row i and; column j (suppose one

cell contains only one mention). Ti is the ith row of table T ,

Tj is the jth column of table T . DBpedia knowledge graph

(KG) in this paper can be described by (E , T ,P,F), where

E = {e1, ..., e|E|} is a set that consists of all the entities in the

KG. T = {t1, ..., t|T |}is the set of entity types in the KG, and

the types are connected with the relations to form the ontol-

ogy of KG. P = {p1, ..., p|P|}is the set of properties (which

is used to describe the entity). F = {f1, ..., f|F|} contains all

the facts where each fact is denoted by a unique RDF triplet

in the KG (includes the triplets defined by ontology). For

every table T in the dataset, column type annotation is to

assign a type M(T, Tj) ∈ T to each column in T .

4 METHODS

In this section, we first introduce the deep-learning part of

our hybrid model, describing in detail how contrastive learn-

ing with hard samples are achieved. Then, the features gen-

erated by multiple knowledge graphs are listed individually,

followed by the feature combination method.

Figure 2: This figure shows how the deep-learning part o our model is trained using the same BERT encoder layers. Every

training task would contribute to the fine-tuning of the same encoder. Weight of every task could be contralled by adjusting

number of training data.

4. 1 Deep-learning Prediction

The training part of our model is shown in Figure 2, where

the first two tasks represent the tasks described in Suhara et

al.’s [23] work. The last task is contrastive learning task we

add to improve the generality of model. It should be noted

that contrastive learning is one of the training progress as

is shown in the figure instead of fine-tuning before training.

Training methods and contrastive learning methods will be

introduced specifically.

4. 1. 1 Model Training

As mentioned before, the backbone of the deep-learning

part of our model follows the idea proposed by Suhara et

al. [23], where the column serialization is implemented in a

very simple way by concatenating the content in the cell of

corresponding column in order. That is, suppose a column

Tj has values T1j , T2j ,..., Tmj , the column could be serialized

to the sequence as follows

Sequencecol(Tj) ::= [CLS] m1j ... mrj [SEP] (1)

Where [CLS] (classification) and [SEP] (separation) are

special tokens that are used to represent the begin-

ning and end of a sentence, respectively. They are

used to mark the boundary between individual sentences

or document segments in the input text. For exam-

ple, the column in Figure 1(b) would be serialized to

[CLS] panathinaikos athens montepaschi siena Zalgiris

kaunas [SEP]. In this way, the problem is converted into a

sequence classification task. Using training data to fine-tune

the BERT model is therefore straightforward.

When it comes to table-wise serialization, the idea is al-

most th same. Take the entire table T as the input, column

sequences are concatenated in order, constructing the table

sequence

Sequencetable(T) ::= [CLS] m11 ... mr1 [CLS]

... [SEP] m1c ... mrc [SEP]
(2)

In this case, the column sequences are connected with

[CLS] instead of [SEP] to calculate an embedding vector

for every classification token based on surrounding tokens,

which allows the table-wise semantics to be involved in each

[CLS] token of corresponding column. For the first two tasks

in Figure 2, table sequence input is encoded to correspond-

ing embedding h. The embedding which represents [CLS]

tokens in the sequence is extracted for type classification.

Let LM donates the pre-trained language model of the en-

coder while |Ctype| is the number of types in the dataset. Let

g be the dense layer of dimension d× |Ctype| for the column

type prediction. The deep-learning model would compute

softmax(LM(Sequencetable(T)) · g) (3)

Since the Wikitable dataset is a multi-label dataset, binary

cross-entropy loss is applied instead of cross entropy loss to

properly calculate the loss.

4. 1. 2 Contrastive learning

Contrastive learning [20] is a machine learning technique

that involves training a model to recognize the difference be-

tween two or more input samples. In contrastive learning,

the model is presented with two or more input samples and

is trained to maximize the difference between the represen-

tations of these samples in the learned feature space.

In the module we propose, every batch for contrastive

learning is composed of one target column, one positive col-

umn, and several negative columns. They are all serialized

to a corresponding column sequence and sent into the en-

coder to obtain the embedding h. The embedding of the

target embedding h and the positive embedding h+ should

be pulled together. Also, h and negative column embeddings

h− should be pushed apart. Accordingly, the loss function

of contrastive learning loss is

Lcl = − log
e

cos(h,h+)
τ∑N−

i=1 e
cos(h,h

−
i

)

τ

(4)

where N− is the number of negative samples.

The generation of negative samples is performed by an-

alyzing confusion matrix which is produced in each epoch

over the validation dataset. Confusion matrix compares the

predicted class labels of the model with the true class labels

to determine the number of true positives, false positives,

false negatives, and true negatives. The precision of each

type in the confusion matrix could vary differently and some

types could reach a precision of 1. Those types should not

be considered as the types to be optimized. Let the thresh-

old factor be u. Every type whose precision is smaller than

u will be selected as the target type, And the column with

corresponding ground truth target type will be collected as

target columns. Negative samples are also generated accord-

ing to row where target types are in the confusion matrix.

Let u− be the threshold for negative sample selection. The

false positive types whose ratio in the row exceeds u− will

be collected as the negative samples for the target type.

Figure 3: The features of the surfaces are extracted in

different tasks. Weight of every task could be contralled by

adjusting number of training data. m11, m21 and m31 are

mentions in table T

In TURL WikiTables, for example, one column could

have two ground truth types sport.athlete and basket-

ball.basketball player. If sport.athlete is classified to basket-

ball.basketball player, the positive sample is the column with

type sport.athlete, and the negative sample should include

type basketball.basketball player. Mutual inclusion case will

not be further processed because the batch is constructed

randomly and the quantity of TURL WikiTables is large

enough to avoid the duplicates. Besides, since the training

is accomplished on TURL WikiTables, where the misclas-

sifications mostly exist between non-overlapped types, the

semantically overlapped type pair will not be taken into con-

sideration.

Contrastive learning dataset is organized with respect

to the proportion of corresponding types in the validation

dataset. For example, there are two target types Artist and

PLayer, where Artist accounts for 0.1 in the validation set

while Player accounts for 0.4 in the validation set. Let N be

the total number of contrastive learning samples. Then the

number of samples in a batch whose target is Artist will be

0.2N , and the number of samples in a batch whose target is

Player will be 0.8N .

4. 2 Knowledge Graph Prediction

We utilize Mmultiple knowledge graphs for finding fine-

grained column types from predicted types by the deep-

learning model. Acting as an alternative to FreeBase which

is not under maintenance anymore, which makes the type

identificatin very hard. And such problem can be converted

to a mapping or alignment task to other trusted knowledge

graphs, which exists ubiquitously in many fields. In our

model, we try to create a mapping from ontologies of DBpe-

dia and CaLiGraph to the ontology of FreeBase using ranking

result based on linguistic features, which calculates the con-

fidence of mapping between each type pair. The features we

select to perform the mapping and the feature combination

methods will be shown.

4. 2. 1 Entity Linking

As is shown in Figure 3, we find meta URL e (entity page)

of every mention in the column according to the hints in the

dataset. After a SPARQL query over these entities is exe-

cuted on DBpedia and CaLiGraph, statistics is collected on

these queried types, recording their count for the following

feature computation.

Below are the main SPARQL queries used in our model

SELECT DISTINCT s t r (?mtype) as ?mtype

WHERE {
en t i t y rd f : type ?mtype .

}
FILTER (s t r s t a r t s (s t r (?mtype) ,

’ http :// ca l i g r aph . org / onto logy / ’))

SELECT DISTINCT s t r (?mtype) as ?mtype

WHERE {
en t i t y rd f : type ?mtype .

}
FILTER (s t r s t a r t s (s t r (?mtype) ,

’ http :// dbpedia . org / onto logy / ’))

4. 2. 2 Feature Selection

In order to pass the information from ontologies of CaLi-

Graph and DBpedia to FreeBase, several features need to

be designed to achieve the mapping. Since DBpedia on-

tology well maintains semantic hierarchy and relationship

among entities in the KB, types in this ontology form a tree

structure according to the thickness of the granularity. This

means that relying on a pure voting mechanism can not se-

lect the optimal column type. This is because certain types

are superior in numbers, but their coverage is too wide to de-

scribe the common characteristics of the content in a column,

thus several features need to be constructed manually to de-

liver information. As Figure 3 shows, we select three features

to capture the information of a knowledge graph: embedding

similarity, levenshtein similarity, and majority voting.

Similarity between strings:Given two plain texts s1

and s2, we define the string similarity SSim(s1, s2) as fol-

lows:

SSim(s1, s2) =

1− LevenshteinDistance(s1, s2))

sum {length(s1), length(s2)}

(5)

It should be noted that the Levenshtein distance calcu-

lation method here uses the calculation method in python-

levenshtein（注1）, which treats the ”replace” edit operation dif-

ferently than the other operations (i.e. with a cost of 2).

We think such change is more reasonable. For example, the

StringSimilarity between “abcd” and “dcba” should be 0.25

instead of 0 (if the traditional Levenshtein Distance method

is adopted). Which could retain the relevance of certain texts

when the string order changes。
Levenshtein Similarity: In our model, tasks are ac-

complished using multiple knowledge graphs. Most of the

types in DBPedia have standard format labels which de-

scribe the general information. We can easily access the type

of each entity on local dump and SPARQL endpoint. How-

ever, in FreeBase, the type is organized by the category (in

type tume.event, time is the category and event is the type),

which makes it hard to perform similarity function on the

type phrase. Hence we define the similarity between type

phrases as follows:

LSim(s,a) = max
ai∈a

SSim(s, ai) (6)

where a = {a1, a2, ..., an} is the preprocessed type phrase

with the removal of stop words and n = |a| is the length of

preprocessed type phrase. After removing the stop words,

we tokenize the type phrase to retain the main information

of it. In this case, the similarity between phrases can avoid

the interference of invalid information as much as possible.

（注1）：https://github.com/ztane/python-Levenshtein

If the number of terms in s is greater than one, the results

will be averaged.

For every type collected by querying DBpedia and CaLi-

Graph, levenshtein similarity is performed on all the Free-

Base types provided by the WikiTable dataset. Let the out-

put be ls, which is of dimension |th| by |Ctype|, where |th|
is total number of queried type.

Embedding Similarity: :

In our proposed method, the fine-tuned deep-learning

model is used to predict column types. At the same time,

we also use other plain pre-trained language models to di-

rectly produce the embeddings of types and compared with

all the types in FreeBase using cosine similarity to generate

confidence.

cosSim(h1,h2) =
h1 · h2

||h1|| · ||h2||
(7)

For every type collected by querying DBpedia and CaLi-

Graph, embedding similarity is performed on all the Free-

Base types provided by the WikiTable dataset. Let the out-

put be es, which is of dimension |th| by |Ctype|.
4. 2. 3 Feature Combination

The ontology of CaLiGraph is rich but complicated, which

indicates that types with few occurences should be ignored.

Compared to CaLigraph, DBPedia has fewer samples, but

the ontology is more organized. Most of the types in DBpe-

dia have standard format labels which describe their general

information. Therefore, a reasonable weighting strategy is

required.

Let the count statistics vector produced in Entity Linking

be c. The final confidence is shown as follows

softmax((es+ ls) · c

|c|) (8)

Where |c| is the total count of queried types. The appli-

cation of softmax could neglect the type with little count.

4. 3 Column Type Annotation

Assuming the outputs of deep-learning model and knowl-

edge graph method are D and; K respectively (of dimension

|Ctype|). The final ranking function is

argmaxidx∈1,...,|D|((αD + βK)idx) (9)

where α, β ∈ [0, 1] with α + β = 1 are the weight param-

eters. The type with the highest score will be selected as

the output result. Since the range of these scores is between

0 and 1, it can also be regarded as the confidence of corre-

sponding type as the column type.

DODUO TURL Proposed method (dl only)

R P Micro F1 Macro F1 R P Micro F1 Macro F1 R P Micro F1 Macro F1

TURL WikiTables 92.69 92.21 92.45 - 90.54 87.23 88.86 - 93.12 90.57 92.51 -

Fine-grained

WikiTables

w/o threshold

22.07 22.07 20.89 26.81 20.05 20.05 13.89 18.97 23.11 23.11 23.11 28.59

Fine-grained

WikiTables

w threshold

38.90 87.63 54.15 77.01 33.43 91.93 49.03 - 38.82 86.96 53.68 74.74

Table 1: Performance on WikiTable Dataset with only deep-learning module of the proposed method.

5 EVALUATION

5. 1 Dataset

As the benchmark dataset used in the evaluation,

TURL WikiTable [7] is a collection of tables collected from

Wikipedia, which consists of 580,171 tables in total. The

dataset provides both annotated column types and relations

for training and evaluation. For column type prediction, the

dataset provides 628,254 columns from 397,098 tables anno-

tated by 255 column types. For column relations, the dataset

provides 62,954 column pairs annotated with 121 relation

types from 52,943 tables for training. According to [7], the

type and relation labels are from FreeBase [2] and are ob-

tained by aggregating entity links attached to the original

tables. For both tasks, we used the same train/valid/test

splits as TURL [7]. Each column/column-pair allows to have

more than one annotation, and thus, the task is a multi-label

classification task.

During the curation on TURL WikiTables dataset, we

check the header text, table name and section title in order.

For example, given two types film.actor and tv.tv actor and

the table name is american television star, thentv.tv actor

will be chosen as the fine-grained type. Our fine-grained

WikiTables dataset includes 617 tables containing 1350

columns. Our fine-grained WikiTables dataset it’s only used

as test dataset in evaluation.

5. 2 Baselines

TURL [7] is a Transformer-based language model (LM),

in which a pre-trained LM is further pre-trained using table

data, making it suitable for tabular data.TURL proposes a

novel approach for table understanding, which involves learn-

ing a low-dimensional representation of tabular data using

deep neural networks.

DODUO [23] proposes a method for automatically anno-

tating tabular data columns with semantic types using pre-

trained LMs. The proposed method leverages the contextual

informgtiation captured by encoders which share parame-

ters among different tasks to improve the accuracy of col-

umn annotation, even when dealing with complex and noisy

datasets.

5. 3 Experimental Setting

We use the bert-base-uncased as default encoder, and

AdamW optimizer with learning rate as 5e-5, and train

epochs set to be 20, input max length as 32, and batch size

as 16. For the combination part α is set to 0.8, and β is

correspondingly 0.2. For every training epoch in the shared

parameter model, |T |
10

samples is offered by the contrastive

learning step.

5. 4 Main Result

full

Micro F1 Macro F1

DODDUO 20.89 28.61

TURL 13.89 18.97

Proposed Method 41.19 46.17

Table 2: Performance on fine-grained WikiTable Dataset

using top 1 prediction.

In Table 1, with and without threshold indicates different

ways to deal with the confidence generated by each model.

When the evaluation is performed without the threshold,

only the type with the highest confidence will be selected

as the result. When we evaluate with the threshold, for any

type whose confidence is greater than a certain threshold will

be select as the result, which makes the task multi-output

task. As result showed in Table 1, with the contrastive

learning module being added to the shared parameter model,

recall increased and procession decreased. That might be

caused by the additional module improving the generality

of the model. The fine-grained WikiTables without thresh-

old means we only take the top one type predicted by the

model as the result type. the macro f1 score is remarkably

improved. But if we use the evaluation with threshold which

is designed for multi-label output, Doduo is better, which

takes top K type as the predicted types where K equals to

the number of types whose logit is greater than a specific

threshold. In the experiment the threshold is set to log 0.5.

As shown in Table 2, After integrating the knowledge

graph module, performance for fine-grained WikiTables

dataset without threshold on micro F1 and macro F1 score

both extensively outperform DODUO, which means plain

surface texts provided by knowledge graphs can show noise

brought by embeddings generated by the pre-trained lan-

guage model can be alleviated.

6 Conclusion

In this paper, we proposed a hybrid model that makes use

of deep-learning and knowledge graph-based approaches for

annotating table columns. The key contributions we intro-

duce include 1) Used an unsupervised method on embed-

dings over type texts and interpretable linguistic features to

accomplish mapping between ontologies of multiple knowl-

edge graphs; 2) combining the advantage of deep-learning

and knowledge graphs, to build a more interpretable, robust

and fine-grained typing results to cope with the challenge of

column type annotation.

In the future, we will pay more attention to the perfor-

mances on macro F1 score of the model and finish the ab-

lation experiments for knowledge graph module. Since the

semantic hierarchy and relationship are well maintained in

the ontology of DBPedia (which has a limited number of

words and terms), the granularity of the result in task might

also be improved by adding more interpretable features like

the depth of DBPedia ontology, making the results more fine-

grained. With embeddings, we can achieve better accuracy

when it comes to correlations at the semantic level, which

makes contrastive learning worth a try in the future. Fur-

thermore, we will try to develop a real-time system based on

the model proposed in this paper.

References

[1] Chandra Sekhar Bhagavatula, Thanapon Noraset, and

Doug Downey. Tabel: Entity linking in web tables. In Inter-

national Semantic Web Conference, pp. 425–441. Springer,

2015.

[2] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge,

and Jamie Taylor. Freebase: a collaboratively created graph

database for structuring human knowledge. In Proceedings

of the 2008 ACM SIGMOD international conference on

Management of data, pp. 1247–1250, 2008.

[3] Michael J Cafarella, Alon Halevy, and Nodira Khoussain-

ova. Data integration for the relational web. Proceedings of

the VLDB Endowment, Vol. 2, No. 1, pp. 1090–1101, 2009.

[4] Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene

Wu, and Yang Zhang. Webtables: exploring the power of

tables on the web. Proceedings of the VLDB Endowment,

Vol. 1, No. 1, pp. 538–549, 2008.

[5] Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and

Charles Sutton. Colnet: Embedding the semantics of web

tables for column type prediction. In Proceedings of the

AAAI Conference on Artificial Intelligence, Vol. 33, pp.

29–36, 2019.

[6] Vincenzo Cutrona, Federico Bianchi, Ernesto Jiménez-Ruiz,

and Matteo Palmonari. Tough tables: Carefully evaluating

entity linking for tabular data. In International Semantic

Web Conference, pp. 328–343. Springer, 2020.

[7] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu.

Turl: Table understanding through representation learning.

arXiv preprint arXiv:2006.14806, 2020.

[8] Lise Getoor. Link-based classification. In Advanced methods

for knowledge discovery from complex data, pp. 189–207.

Springer, 2005.

[9] Nicolas Heist and Heiko Paulheim. Uncovering the seman-

tics of wikipedia categories. In International semantic web

conference, pp. 219–236. Springer, 2019.

[10] Nicolas Heist and Heiko Paulheim. Entity extraction from

wikipedia list pages. In European Semantic Web Confer-

ence, pp. 327–342. Springer, 2020.

[11] Nicolas Heist and Heiko Paulheim. Information extraction

from co-occurring similar entities. In Proceedings of the Web

Conference 2021, pp. 3999–4009, 2021.

[12] Gaëlle Hignette, Patrice Buche, Juliette Dibie-Barthélemy,

and Ollivier Haemmerlé. Fuzzy annotation of web data ta-

bles driven by a domain ontology. In European Semantic

Web Conference, pp. 638–653. Springer, 2009.

[13] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich,

and Gerhard Weikum. Yago2: A spatially and temporally

enhanced knowledge base from wikipedia. Artificial Intelli-

gence, Vol. 194, pp. 28–61, 2013.

[14] Yusra Ibrahim, Mirek Riedewald, and Gerhard Weikum.

Making sense of entities and quantities in web tables. In

Proceedings of the 25th ACM International on Conference

on Information and Knowledge Management, pp. 1703–

1712, 2016.

[15] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,

Dimitris Kontokostas, Pablo N Mendes, Sebastian Hell-

mann, Mohamed Morsey, Patrick Van Kleef, Sören Auer,

et al. Dbpedia–a large-scale, multilingual knowledge base

extracted from wikipedia. Semantic web, Vol. 6, No. 2, pp.

167–195, 2015.

[16] Oliver Lehmberg and Christian Bizer. Stitching web tables

for improving matching quality. Proceedings of the VLDB

Endowment, Vol. 10, No. 11, pp. 1502–1513, 2017.

[17] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti.

Annotating and searching web tables using entities, types

and relationships. Proceedings of the VLDB Endowment,

Vol. 3, No. 1-2, pp. 1338–1347, 2010.

[18] Xusheng Luo, Kangqi Luo, Xianyang Chen, and Kenny Zhu.

Cross-lingual entity linking for web tables. In Proceedings

of the AAAI Conference on Artificial Intelligence, Vol. 32,

2018.

[19] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,

and Jeff Dean. Distributed representations of words and

phrases and their compositionality. In Advances in neural

information processing systems, pp. 3111–3119, 2013.

[20] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,

and Jeff Dean. Distributed representations of words and

phrases and their compositionality. Advances in neural in-

formation processing systems, Vol. 26, , 2013.

[21] Varish Mulwad, Tim Finin, Zareen Syed, and Anupam

Joshi. T2ld: Interpreting and representing tables as linked

data. In 9th International Semantic Web Conference

ISWC, p. 25. Citeseer, 2010.

[22] Dominique Ritze, Oliver Lehmberg, Yaser Oulabi, and

Christian Bizer. Profiling the potential of web tables for

augmenting cross-domain knowledge bases. In Proceedings

of the 25th international conference on world wide web, pp.

251–261, 2016.

[23] Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang,

Çağatay Demiralp, Chen Chen, and Wang-Chiew Tan. An-

notating columns with pre-trained language models. In Pro-

ceedings of the 2022 International Conference on Manage-

ment of Data, pp. 1493–1503, 2022.

[24] Zareen Syed, Tim Finin, Varish Mulwad, Anupam Joshi,

et al. Exploiting a web of semantic data for interpreting ta-

bles. In Proceedings of the Second Web Science Conference,

2010.

[25] Kunihiro Takeoka, Masafumi Oyamada, Shinji Nakadai,

and Takeshi Okadome. Meimei: An efficient probabilistic

approach for semantically annotating tables. In Proceedings

of the AAAI Conference on Artificial Intelligence, Vol. 33,

pp. 281–288, 2019.

[26] Zareen Syed Varish Mulwad, Tim Finin and Anupam Joshi.

Using linked data to interpret tables. In Proceedings of

the the First International Workshop on Consuming Linked

Data, November 2010.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Advances in neural

information processing systems, pp. 5998–6008, 2017.

[28] Daheng Wang, Prashant Shiralkar, Colin Lockard, Binxuan

Huang, Xin Luna Dong, and Meng Jiang. Tcn: Table convo-

lutional network for web table interpretation. In Proceedings

of the Web Conference 2021, pp. 4020–4032, 2021.

[29] Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulse-

bos, Çağatay Demiralp, and Wang-Chiew Tan. Sato: Con-

textual semantic type detection in tables. arXiv preprint

arXiv:1911.06311, 2019.

[30] Ziqi Zhang. Towards efficient and effective semantic table

interpretation. In International Semantic Web Conference,

pp. 487–502. Springer, 2014.

[31] Ziqi Zhang. Effective and efficient semantic table interpre-

tation using tableminer+. Semantic Web, Vol. 8, No. 6, pp.

921–957, 2017.

