
DEIM Forum 2023 1b-9-4

Utilizing Abstract Syntax Tree Embedding to Improve the Quality of
GNN-based Class Name Estimation

Hiroto MAMBA†, Yasuhiro HAYASE†, and Toshiyuki AMAGASA†

† University of Tsukuba
1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan

E-mail: †mamba@kde.cs.tsukuba.ac.jp, ††{hayase,amagasa}@cs.tsukuba.ac.jp

Abstract While giving comprehensible names to identifiers is essential in software development, it is sometimes difficult

since it requires development experience and knowledge of the application domain. Among work to support the developer’s

identifier naming, a GNN-based class name estimation approach learns a graph of relationships between program elements,

i.e., classes, methods, and fields, but it ignores information within the methods. This study proposes an approach that exploits

information from method bodies, which can help estimate correct class names. The proposed approach extends the existing

GNN-based approach to use embeddings of the corresponding ASTs for method nodes. An evaluation experiment measures

how correctly the proposed approach can estimate class names in large datasets of open-source Java projects. The experimental

result shows that the proposed approach improves the estimation correctness compared to the existing approach.

Key words software engineering, graph neural network, abstract syntax tree, class name estimation

1 Introduction

In software development, giving comprehensible names to iden-

tifiers is essential for developers’ program understanding. When

developers understand programs written before, they often try to

obtain application domain knowledge from the identifier names of

program elements such as variables, methods, and classes. [1] Es-

pecially when a program has complex source codes or whose doc-

umentation is outdated or not helpful, the names are important

sources of knowledge. [2] If an identifier has a meaningless name

or one identical name is used for different concepts, those names

cause difficulties in program understanding. [3] Since a study indi-

cates that developers spend 60% of their working time on program

understanding [4], the names should be easy to understand the func-

tions and roles.

However, sometimes it is difficult to give a good name to a pro-

gram element. Good naming requires knowledge about the ele-

ment’s role in the project [3] or what names appear elsewhere [5].

Moreover, a name may become inappropriate as the system evolves.

[3]

Among work to support the developer’s identifier naming, an ap-

proach [6] for class name estimation learns the relationship between

program elements. They modeled these relationships into a graph

with nodes representing classes, fields, and methods. Although this

graph can exploit complex classes’ nature, it ignores most of the

information that each node itself has, which may be helpful to the

estimation.

This study proposes an approach to estimate class names us-

ing relationships and the information within method nodes. Since

machine-learning work for software programs often utilizes AST

[7–9], it may be helpful to represent the nodes’ properties. While

this approach is based on the existing GNN-based approach [10],

it extends the existing approach to utilize embeddings of methods’

ASTs.

An experiment investigates the contribution of the proposed ap-

proach by measuring the estimation correctness using large datasets

of open-source Java projects. The experimental result that the pro-

posed approach can estimate the class names more correctly com-

pared to the existing one shows that the AST helps to represent the

information within the method nodes.

The remaining part of this paper consists as follows. Section

2 describes prior work in machine learning for program code and

class name estimation. Section 3 describes preliminary used as

components of the proposed method. Section 4 describes the pro-

posed method. Section 5 describes the experiments for the proposed

method. Finally, Section 6 concludes this paper.

2 Related work

This section introduces prior work in machine learning for pro-

gram code. Section 2. 1 describes the general approaches for var-

ious tasks; then, Section 2. 2 describes the existing approaches to

learning class entities.

2. 1 Machine learning approaches for software programs
Recently, various studies have applied machine learning to source

code for tasks such as method naming [7–9, 11–14], code summa-

rization [15–19], method name consistency checking [20], type in-

ference [21], and code translation [22, 23].

Approaches that follow architectures for neural machine transla-

tion [24, 25] learn source code as a sequence of tokens to generate

method name [14] or method summary [15].

On the other hand, various approaches exploit specific features

of source code, such as abstract syntax trees (AST) or method call

dependencies. Alon et al. [7, 11, 26] and Peng et al. [27] treat an

AST as a set of paths between two leaf nodes. Zhang et al. [28]

and Lin et al. [29] treat it as a set of subtrees. Hu et al. [16, 17]

treats it as one sequence by structure-based traversal. GNN-based

approaches [8, 9, 30] treat an AST as a graph with additional edges

and learn it with graph neural networks. Besides, some approaches

learn dependencies between elements that appear in source code,

such as methods’ call dependencies [5,31,32] or data flow [9,23,33].

2. 2 Approaches for class entities
As for class name estimation, Kurimoto et al. [6] proposed an

approach that learns the relationship between program elements to

estimate class names by graph embedding. This relationship is rep-

resented as a graph with nodes of classes, methods, and fields. This

approach can estimate a class name even before the class is used

from other code, in contrast to another approach [34] that learns the

context where the class is used.

Subsequently, a work [10] proposed an approach that learns the

same graph using GNN. In contrast to Kurimoto et al., where mem-

ory usage depends on the graph size, this approach can learn from

a large dataset because it calculates embedding representations for

each word rather than the whole graph node.

As for utilizing ASTs, Compton et al. [35] obtained an embed-

ding representation of the whole class. This approach first calcu-

lates embedding for each method in a Java file using code2vec [11],

and then calculates entire class embedding by applying an aggrega-

tion function, such as summation and median. The author uses this

obtained class embedding for code classification tasks.

3 Preliminary

This section describes methods used in the proposed method de-

scribed in Section 4.

3. 1 code2seq
code2seq [7] is an approach for method name estimation, which

exploits the abstract syntax tree (AST) of methods. This estima-

tion model takes a source code of method definitions as input and

outputs candidates of methods’ names.

The code2seq treats an input method as a set of paths called AST

path at the beginning of the estimation. AST paths are considered

between any two leaf nodes in the AST, and each AST path pro-

vides information about a sequence of nodes on the path and tokens

corresponding to two leaf nodes (illustrated in Figure 1).

The code2seq calculates feature vectors for AST paths

as follows. Suppose that an AST path is represented as

AST-Pathi = ⟨si1si2 · · · ,vi1vi2 · · · ,ei1ei2 · · · ⟩. Here, vi1vi2 · · · is

MethodDeclaration

SimpleName Parameter Parameter PrimitiveType BlockStmt

distance PrimitiveType SimpleName

int a

PrimitiveType SimpleName

int b

int ReturnStmt

MethodCallExpr

NameExpr SimpleName BinaryExpr

SimpleName

Math

abs NameExpr NameExpr

SimpleName

a

SimpleName

b

int distance(int a, int b) {
 return Math.abs(a - b);
}

AST (Abstract Syntax Tree)

Source Code

AST path between token "abs" and token "b"

Figure 1 An example of an abstract syntax tree (AST) and an AST path.

a sequence of nodes on the AST path, and si1si2 · · · and

ei1ei2 · · · indicate words that make up tokens corresponding to

two leaf nodes, respectively, called subtokens. The code2seq

model calculates a feature vector zi for AST-Pathi using

embeddings for the subtokens Esubtoken(si1),Esubtoken(si2), · · · ,
Esubtoken(ei1),Esubtoken(ei2), · · · and embeddings for the nodes

Enode(vi1), Enode(vi2), · · · . Here, Esubtoken(·) and Enode(·) are op-

erations that look up a subtoken embedding vector and a node em-

bedding vector, respectively. Then, the model averages the feature

vectors of all AST paths, which is used for the subsequent genera-

tion of a method name. The explanation in Section 4. 1. 2 denotes

the operation up to this point as code2seq encoder(AST), that is,

the operation from inputting an AST of a method to calculating this

averaged vector.

The code2seq has an advantage in that it can easily consider code

snippets with different syntactic structures but similar semantics as

similar ones. This is because the code2seq holds embedding vectors

for each node in an AST path and calculates the feature vector of the

AST path from them, in contrast to having embedding vectors for

only the entire AST path [11].

3. 2 Graph neural network
Graph neural networks (GNN) are neural networks that take

graph structures as input and learn them. As a one of GNN, graph

convolutional network (GCN) [36] convolutes features of neighbor-

ing nodes of each node and generates new features. By repeating

the convolution multiple times, it is possible to convolute features

of nodes that are more than one step away from each other. When

H(0) =
(
h
(0)
1 ,h

(0)
2 , · · · ,h(0)

N

)
and A ∈ RN×N represent initial node

features and the adjacency matrix of a graph with N nodes, respec-

tively, this convolution is formulated as follows:

H(l+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 H(l)W (l)

)
where IN ∈ RN×N is an identity matrix, Ã = A+ IN , D̃ii = ∑

j
Ãi j ,

and W (l) is a weight matrix for l th convolution step.

3. 3 GNN-based class name estimation
A work [10] has proposed an approach to estimate class names,

which learns relationships between program elements by GNN. Fig-

ure 2 illustrates this approach. This approach takes a class’s source

code as input from a developer, then estimates candidates for the

name of the class. This estimation model first constructs a graph

representing the program elements’ relationships. Then a GNN cal-

culates the feature vector for each node in the graph, considering the

relationships between nodes. Finally, the model generates a name

from the calculated feature vector.

In the following explanation, a class whose name is to be esti-

mated is called target class.

a) Relation graph

This approach represents the relationships between program ele-

ments such as classes, methods, and fields as a graph used by Ku-

rimoto et al. [6] (later referred to as a relation graph). This graph

contains edges for the following types of relationships between the

program elements:

• Class inheritance, where one class extends another class.

• Ownership from a class to a method or a field.

• A relationship where one method calls another.

• An access relationship from a method to a field.

• A relationship from a method to the class of its return type.

• A relationship from a field to the class of the field’s type.

When a developer inputs a code of a target class, the estimation

model first constructs this relation graph. To include graph nodes

for program elements outside the code of the target class, the model

takes not only the code of the target class but also codes referenced

by the target class.

In the following explanation, let G = (V,E) be the constructed

relation graph, where V = {v1,v2, · · ·} is a set of nodes correspond-

ing to the program elements, and E = {e1,e2, · · ·} is a set of edges

corresponding to the relations. vt ∈ V is the node corresponding to

the target class. Besides, denote the number of nodes in G by |V |.
b) Obtaining initial node features

Before applying GNN, the model assigns a vector to each node,

called initial node feature. For each node vi, the model calculates

an initial feature h(0)
i based on the word sequence of the class name

of vi. The initial features make it possible for GNN to distinguish

nodes.

c) Generation of the target class name from initial node features

Given the initial node features of each graph node, GNN obtains

each node’s new feature, and then an RNN-based generator outputs

candidates for the target class name as word sequences. Formally,

the GCN (described in Section 3. 2) first receives the initial feature

h
(0)
1 ,h

(0)
2 , · · · ,h(0)

|V | of each node v1,v2, · · · ,v|V |, and then outputs

the new feature h
(l)
1 ,h

(l)
2 , · · · ,h(l)

|V | after l times convolutions. Then

LSTM [37] receives the feature h′t of the target class node vt and

outputs sequentially the probabilities of the next words of the target

class name.

d) Training of the neural network

In the training phase, the model learns to minimize the cross-

entropy loss between the output probabilities and the ground-truth

class name for each word. Adam [38] optimizer is used to update

the model parameters.

4 Proposed method

This section describes an approach to estimate class names with

a graph neural network using the ASTs of methods. This approach

takes the source code of a class as input from a developer and then

estimates candidates for the class name. The key idea of this ap-

proach is to learn information within methods along with relation-

ships between program elements. While the relation graph can

model the class’s complex nature, the graph ignores the internal

properties in each node. On the other hand, methods’ ASTs have

rich structural information to represent the properties of the meth-

ods. By combining the relation graph and the method AST, this ap-

proach can estimate the class name while considering each node’s

internal properties and its neighboring nodes’ properties.

This approach is based on the existing GNN-based estimation ap-

proach [10] and extends it to include information from the AST of

each method. This approach gives GNN an embedding containing

the AST information as the initial node feature. This embedding is

computed using the vector generated in the middle of code2seq [7].

Given the initial feature with AST information, GNN can obtain

each node’s new feature, capturing the neighborhood method’s syn-

tactic structure. Figure 3 illustrates this proposed method.

As another way to integrate AST information into the existing

GNN-based approach, there may be an approach to treat the AST as

a subgraph and add an edge between the root node of the AST and

the relation graph. However, since the existing approach estimates

the class name by considering the information of the neighboring

nodes of a target class, this alternative approach can only use the

information of the part near the root node of the AST and ignores

most of its information.

The rest of this section describes embeddings of program element

information used as initial node features in GNN.

4. 1 Embedding of program elements’ information
This section describes embedding generations of node informa-

tion, especially ASTs for methods’ nodes, to be used as initial node

features.

Depending on the program element type, this estimation model

embeds each graph node in two ways: name embedding and AST

C

C

owns

extends

owns

F

returns

accesses M

C

C

F M

Name

"BufferedReader"

Name

"readLine"

Name

?

Name

"lineNumber"

Initial Node
Feature

Construct
Graph

Obtain Initial
Node Features

GNN Generate
Names

1. LineNumberReader 80%
2. LineReader 10%
3. ...
4. ...

class ?
 extends BufferedReader {
 int lineNumber;
 String readLine() { ... }
 ...
}

.java

.java

.java

.java

Target Class

Name

"String"

C C

Source Code of Target Class

F = Field M = MethodC = Class

Figure 2 An illustration of the existing approach. [10]

C

C

owns

extends

owns

F

returns

accesses M

C

C

F M

Name

"BufferedReader"

Name

"readLine"

AST

Name

?

Name

"lineNumber"

Construct
Graph

Embed Node
Information

GNN Generate
Names

1. LineNumberReader 80%
2. LineReader 10%
3. ...
4. ...

class ?
 extends BufferedReader {
 int lineNumber;
 String readLine() { ... }
 ...
}

0
0
0

.java

.java

.java

.java

Target Class

Name

"String"

C C

0
0
0

0
0
0

0
0
0

Source Code of Target Class

Name Embedding
AST Embedding
(by code2seq encoder)

Zero Vector

Name Embedding

Figure 3 An illustration of the proposed method.

embedding. This approach newly employs the AST embedding in

addition to the name embedding, while the name embedding is the

only feature in the existing approach [10].

While the name embedding is calculated based on the name of

a program element for all graph nodes, the AST embedding is cal-

culated for nodes corresponding to a method with a body. In other

words, a class’s or field’s embedding is computed only from the

class name or field name. And the embedding of a method node is

calculated from both the method name and its AST if it is not an

abstract method; otherwise, it is calculated only from the method

name.

Name embedding and AST embedding are calculated as de-

scribed in Section 4. 1. 1 and 4. 1. 2, respectively. In the following

explanation, let hname
i ,hAST

i denote name embedding and AST em-

bedding of a node vi, respectively.

After obtaining the name embedding and the AST embedding,

two embeddings are concatenated. That is, the embedding of a node

vi is h(0)
i = concat

(
hname

i ,hAST
i

)

4. 1. 1 Name embedding

The model computes the name embedding by feeding the word

sequence in an element name to bi-directional LSTM. The input el-

ement name is split into words by camelCase or snake case: e.g.,

a name LineNumberReader is split into three words, line, number,

and reader; a name MAX EXPONENT is split into two words max

and exponent. Then the model sequentially feeds trainable embed-

dings for each word. After feeding, the final hidden state of the bi-

directional LSTM represents the name embedding of the element.

Formally, the name embedding hname
i of an element vi with a name

wi1,wi2, · · · ,wil is calculated as follows:

hname
i1 ,hname

i2 , · · · ,hname
il = LSTM(E(wi1),E(wi2), · · · ,E(wil))

hname
i = concat

(−→
h name

il ,
←−
h name

i1

)
where E(·) represents an operation to look up the embedding vector

of a word, and LSTM(· · ·) represents an operation to feed vectors

to the LSTM sequentially.

As for the target class, the model calculates the name embedding

similarly for other elements mentioned above but treats its name

as a dummy since the name of the target class is to be estimated

itself. Here, the dummy name is a sequence of masking tokens:

⟨SLOT ⟩ , · · · ,⟨SLOT ⟩.
4. 1. 2 AST embedding

The code2seq [7] encoder mentioned in Section 3. 1 calculates

the AST embedding of a method if the method has a body.

Each subtoken embedding used in the code2seq encoder shares

weights the same as the word embedding used in the name embed-

ding. This is because the subtoken embedding and the word embed-

ding are both for tokens that appear in the code.

Besides, zero vectors act as substitutes for the AST embedding

for elements without a method body. The dimension of this zero

vector is the same as the AST embedding for the methods with a

body.

Below shows the AST embedding hAST
i depending on whether

the element corresponding to a node vi has a method body or not:

hAST
i =

{
code2seq encoder(ASTi) if vi has method body

0 otherwise

where ASTi represents the AST of the method corresponding to

node vi.

a) Utilizing weights pre-trained in code2seq encoder

Since the code2seq encoder is a part of a model designed for a

different task, method name recommendation, utilizing pre-trained

weights in the original task may boost the learning compared

to training from scratch. If utilizing the pre-trained pre-trained

weights, the model applies the weights at the beginning of the train-

ing process, and then the weights are fine-tuned during the training.

5 Evaluation

This section describes an experiment to evaluate the proposed

method. The main goal of this experiment is to assess whether

the AST embedding of the proposed method improves the cor-

rectness of the class name estimation compared to the existing

approach. This correctness is measured and compared between

the existing and proposed approaches using several metrics (de-

scribed in Section 5. 1) when estimating the class names of open-

source Java projects. Each approach’s estimation model is trained

and hyperparameter-optimized (described in Section 5. 3) on the

datasets described in Section 5. 2, and then its metrics are computed.

In addition, this experiment compares the metrics between the

model with the pre-trained weights in the code2seq encoder, which

is a component of the proposed approach, and the model without

the weights to show whether these weights affect the estimation. In

the following descriptions, the model with the pre-trained weights

is referred to as Proposed (PT), and the model without the weights

is referred to as Proposed (LFS).

5. 1 Metrics
In this experiment, the estimation model takes as input a set of

source codes where the name of the target class is hidden, and

should then output the original name of the target class. The fol-

lowing metrics, between the estimated name and the original class

name, indicate the quality of the estimation: precision, recall, f1,

partial(k), and exact(k). These metrics are not case-sensitive.

Precision, recall, and f1 values are calculated by counting true

positives, false positives, and false negatives between the estimated

name at the first top of the candidates and the original. For exam-

ple, suppose two estimated names are Reader and LinkedArrayList,

while two original names are LineNumberReader and LinkedList,

respectively. Then the true positives are 3 (Reader, Linked, List),

the false positives are 1 (Array), and the false negatives are 2 (Line,

Number). Therefore, precision is 3/4 = 0.75, recall is 3/5 = 0.6,

and f1 is about 0.67.

partial(k) and exact(k) indicate the proportion of the estimated

names that are partially or exactly the same as the original name in

the top k candidates. The k values used in this experiment are 1 and

10. For partial(k), when an estimated name contains any word of

the original name, it is counted as a partial match.

5. 1. 1 Metrics for the estimation of trivial/non-trivial words

To investigate whether there is any difference in the correlation

between the existing and proposed approaches in terms of the ease

of estimating trivial and non-trivial words, this experiment also

measures the metrics using only the following words:

• Only the most frequent words in the class names of each

dataset, and conversely, only words other than those.

• Only the words other than those that make up the name of the

class that the target class extends, if the target class extends another

class.

This experiment considers two types of words that occur most

frequently: a word in the top 1 and words in the top 10. The rea-

son for considering these two types is that the term test occurs most

frequently in the two datasets used in this experiment (described

in Section 5. 2) and occurs significantly more frequently than the

words in the top 2 and below. Considering the two types of the most

frequent words, the metrics are calculated by considering only the

words in the top 1, only the words in the top 10, only the words in

the top 2 or below (i.e., words other than test), and only the words

in the top 11 or below.

When the metrics are calculated using only a portion of the total

words, the metrics are calculated as follows. For example, suppose

that when the metrics are calculated using only words other than

the term test, an estimated name is PyIndexingTest, while an origi-

nal name is PyEmacsTabTest. In this case, the true positives are 1

(Py), the false positives are 1 (Indexing), and the false negatives are

2 (Emacs and Tab). Therefore the precision is 0.5, the recall is about

0.33, and the f1 is 0.4.

5. 2 Datasets
As real software project codes, this experiment uses two widely-

used [20] existing source code corpus, both collected by Alon et

al. [7], called java-med and java-large. java-med and java-large

Table 1 Hyperparameters after optimization for each estimation model.

Exising [10] Proposed (LFS) Proposed (PT)

Embedding dim 118 505 512

Hidden dim 716 1018 1020

Batch size 96 24 84

Fanout 15 11 9

Learning rate 2.8×10−5 1.81×10−5 7.24×10−5

are a set of top-starred projects on GitHub, containing 1,000 and

9,500 projects, respectively. Names in these datasets seem to have

a certain level of quality since the top-starred projects have many

users and contributors. The dataset is repartitioned into Train : Val1 :

Val2 : Test = 7 : 1 : 1 : 1, independent of the partitioning by Alon et

al.

5. 3 Hyperparameter
The hyperparameters are set as shown in Table 1 by optimization

with Optuna [39]. Throughout the optimization, the hyperparame-

ters are optimized to maximize the f1 on the Val1. After the opti-

mization, the estimation model is re-trained from scratch using the

Val2 for validation. The following describes each hyperparameter,

except for the learning rate.

Embedding dim. The dimension of the two types of embeddings:

one where the name embedding and the subtoken embedding share

weights; the other to embed nodes in AST.

Hidden dim. The dimension of the components in the neural net-

work other than the embedding above, e.g., the dimension of the

hidden state in LSTM or GCN.

Batch size. The number of target classes to learn in a single itera-

tion.

Fanout. The number of neighbors to gather information from in

GCN.

5. 4 Environments
This experiment employs uses a Tesla V100-PCIE-32GB as the

GPU. The neural network implementation uses Pytorch [40] and

the Deep Graph Library [41] for GNN. An existing code2seq im-

plementation（*1） is utilized for AST encoder and pre-training. The

extraction of element relations uses JavaParser（*2）. GCN in the pro-

posed and existing approach has two layers.

5. 5 Experimental result
This section describes the experimental results using the above

experimental settings. Table 2 shows the results of the metrics mea-

sured on all words for each combination of model and dataset. In

addition, Table 3 and Table 4 show the metrics measured on only a

subset of all words, as described in Section 5. 1. 1. Table 3 shows

the metrics measured only on the most frequent words or only on

words other than such words. Furthermore, Table 4 shows the met-

rics measured without the words that make up the name of the class

that the target class extends (if any).

（*1）：https://github.com/m3yrin/code2seq

（*2）：https://javaparser.org/

As shown in Table 2, the proposed approach outperforms the ex-

isting approach in almost all metrics, except for the exact(k = 1) and

exact(k = 10) of the Proposed (PT). This indicates that the AST em-

bedding of the proposed approach is helpful for correctly estimating

class names.

Although the Proposed (PT) can use the pre-trained weights from

the beginning of the training, its precision falls below that of the

Proposed (LFS). This decrease indicates that the Proposed (PT) is

more likely to estimate redundant words than the Proposed (LFS).

This may be due to the difference in the target task between the

proposed approach and the pre-training, i.e., the proposed approach

targets class name estimation, while the code2seq encoder, whose

weights are pre-trained, is designed for method name estimation.

This difference may cause the pre-trained weights to interfere with

the class name estimation.

The metrics measured only on trivial words and those measured

only on non-trivial words show different trends, as shown in Table

3 and Table 4. When measured only on a top 1 word or top 2-10

words, the precision scores of the Proposed (PT) on the java-med

dataset and the Proposed (LFS) on the java-large dataset are lower

than those of the existing approach. This indicates that there are

cases where the proposed approach is likely to estimate trivial words

redundantly. On the other hand, the metrics measured without such

trivial words have the same tendency as those in Table 2. In other

words, all the values of precision, recall, and f1 of the proposed ap-

proach are better than those of the existing approach. Therefore, the

proposed approach can estimate a wider variety of words, incredibly

non-trivial words, rather than trivial words compared to the existing

approach.

6 Conclusion

This paper proposes an approach that aims to exploit the infor-

mation within method nodes in GNN-based class name estimation.

The key idea of this approach is to learn the information within

methods along with the relationships between program elements.

The proposed approach extends an existing GNN-based approach

to utilize the AST embedding generated in a method name estima-

tion approach based on AST.

An experiment measures the estimation correctness using

datasets from open-source projects, which aims to investigate the

effectiveness of the AST embedding of the proposed approach. An

experimental result shows that the proposed approach can estimate

class names better than the existing one.

Future work includes the following. The first is to investigate

other ways to embed node information well. While this work uses

AST to represent node information, machine-learning work often

uses other representations, such as dataflow. Depending on how the

estimation model represents node information, it is valuable to in-

vestigate how the estimation performs. The second is to evaluate

the contributions of the components in the approach on which this

Table 2 Metrics for each estimation model, measured on all words. Bold values represent the results

scores on the java-med and java-large datasets, respectively.

partial(k) exact(k)

dataset precision recall f1 k = 1 k = 10 k = 1 k = 10

Existing [10] java-med 0.2267 0.1643 0.1905 0.4429 0.5805 0.0076 0.0239

Proposed (LFS) java-med 0.2769 0.1968 0.2301 0.4951 0.6591 0.0092 0.0341
Proposed (PT) java-med 0.2407 0.1975 0.2170 0.5016 0.5991 0.0065 0.0184

Existing [10] java-large 0.2652 0.2197 0.2403 0.5228 0.6590 0.0085 0.0364

Proposed (LFS) java-large 0.3051 0.2336 0.2646 0.5368 0.6965 0.0149 0.0480

Table 3 Metrics measured on only a subset of words based on their frequency.

partial(k)

Metrics are measured on dataset precision recall f1 k = 1 k = 10

top 2- words only Existing [10] java-med 0.1843 0.1278 0.1509 0.3393 0.4892

Proposed (LFS) java-med 0.2359 0.1613 0.1916 0.4062 0.5895
Proposed (PT) java-med 0.2101 0.1608 0.1822 0.4086 0.5200

Existing [10] java-large 0.2317 0.1880 0.2076 0.4440 0.5917

Proposed (LFS) java-large 0.2900 0.1993 0.2362 0.4607 0.6451

top 1 word only Existing [10] java-med 0.6699 0.8863 0.7630 0.8948 0.9407

Proposed (LFS) java-med 0.7163 0.8857 0.7920 0.8947 0.9427

Proposed (PT) java-med 0.4698 0.8974 0.6167 0.9045 0.9462
Existing [10] java-large 0.7388 0.8326 0.7829 0.8376 0.9154

Proposed (LFS) java-large 0.3912 0.8838 0.5424 0.8885 0.9664

top 11- words only Existing [10] java-med 0.1729 0.1162 0.1390 0.3009 0.4451

Proposed (LFS) java-med 0.2239 0.1499 0.1796 0.3671 0.5465
Proposed (PT) java-med 0.2026 0.1481 0.1711 0.3677 0.4731

Existing [10] java-large 0.2197 0.1756 0.1952 0.4040 0.5499

Proposed (LFS) java-large 0.2885 0.1870 0.2269 0.4201 0.6036

top 2-10 words only Existing [10] java-med 0.3218 0.3399 0.3306 0.3608 0.4954

Proposed (LFS) java-med 0.3864 0.3547 0.3698 0.3746 0.5745
Proposed (PT) java-med 0.2783 0.3777 0.3204 0.3974 0.5064

Existing [10] java-large 0.3703 0.3877 0.3788 0.4098 0.5962

Proposed (LFS) java-large 0.2992 0.4061 0.3446 0.4312 0.6709

Table 4 Metrics measured excluding the words of the class from which

each class extends.

dataset precision recall f1

Existing [10] java-med 0.1567 0.1193 0.1355

Proposed (LFS) java-med 0.2012 0.1536 0.1742
Proposed (PT) java-med 0.1734 0.1549 0.1636

Existing [10] java-large 0.1930 0.1616 0.1759

Proposed (LFS) java-large 0.2316 0.1872 0.2070

work is based. For example, evaluating how the estimation performs

when some graph edges are removed is interesting. The third is to

use some mechanism to account for the importance of graph nodes

or edges. Although the graph seems to have many edges and nodes

that are not helpful for the estimation, the proposed approach uses

information similarly for all nodes and edges. Mechanisms such as

attention may improve estimation performance by efficiently ignor-

ing unimportant information.

Acknowledgments
This paper is based on results obtained from a project,

JPNP20006, commissioned by the New Energy and Industrial Tech-

nology Development Organization (NEDO).

References
[1] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name?

a study of identifiers,” in 14th IEEE International Conference on Pro-
gram Comprehension (ICPC’06), Jun. 2006, pp. 3–12.

[2] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and
S. Panichella, “Using IR methods for labeling source code artifacts:
Is it worthwhile?” in 2012 20th IEEE International Conference on
Program Comprehension (ICPC), Jun. 2012, pp. 193–202.

[3] F. Deissenboeck and M. Pizka, “Concise and consistent naming,”
Software Quality Journal, vol. 14, no. 3, pp. 261–282, Sep. 2006.

[4] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: A Large-Scale field study with profession-
als,” IEEE Trans. Software Eng., vol. 44, no. 10, pp. 951–976, Oct.
2018.

[5] 米内裕史,早瀬康裕, and北川博之, “ソースコード構文木とコール
グラフの統合的な埋め込みに基づくメソッド名の推定,” 研究報
告ソフトウェア工学 (SE), vol. 2020, no. 10, pp. 1–8, 2020.

[6] S. Kurimoto, Y. Hayase, H. Yonai, H. Ito, and H. Kitagawa, “Class
name recommendation based on graph embedding of program ele-
ments,” in Proceedings - Asia-Pacific Software Engineering Confer-
ence, APSEC, vol. 2019-Decem, 2019, pp. 498–505.

[7] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” in International

Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=H1gKYo09tX

[8] F. Ge and L. Kuang, “Keywords guided method name generation,” in
2021 IEEE/ACM 29th International Conference on Program Com-
prehension (ICPC), vol. 0, May 2021, pp. 196–206.

[9] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to rep-
resent programs with graphs,” in 6th International Conference on
Learning Representations, ICLR 2018 - Conference Track Proceed-
ings, Nov. 2018.

[10] 萬塲大登,早瀬康裕,天笠俊之, and北川博之, “オブジェクト指向
プログラムの要素関係グラフを用いたクラス名の end-to-end学
習,”情報処理学会第 83回全国大会, vol. 4, p. 01, 2021.

[11] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: learning
distributed representations of code,” Proc. ACM Program. Lang., no.
POPL, pp. 1–29, Jan. 2019.

[12] F. Liu, G. Li, Z. Fu, S. Lu, Y. Hao, and Z. Jin, “Learning to rec-
ommend method names with global context,” in Proceedings of the
44th International Conference on Software Engineering, ser. ICSE
’22. New York, NY, USA: Association for Computing Machinery,
Jul. 2022, pp. 1294–1306.

[13] W. Ma, M. Zhao, E. Soremekun, Q. Hu, J. M. Zhang, M. Papadakis,
M. Cordy, X. Xie, and Y. L. Traon, “GraphCode2Vec: generic code
embedding via lexical and program dependence analyses,” in Pro-
ceedings of the 19th International Conference on Mining Software
Repositories, ser. MSR ’22. New York, NY, USA: Association for
Computing Machinery, Oct. 2022, pp. 524–536.

[14] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention
network for extreme summarization of source code,” in Proceedings
of The 33rd International Conference on Machine Learning, ser. Pro-
ceedings of Machine Learning Research, M. F. Balcan and K. Q.
Weinberger, Eds., vol. 48. New York, New York, USA: PMLR,
2016, pp. 2091–2100.

[15] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
source code using a neural attention model,” in Proceedings of the
54th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Berlin, Germany: Association for
Computational Linguistics, Aug. 2016, pp. 2073–2083.

[16] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment gen-
eration,” in Proceedings of the 26th Conference on Program Com-
prehension, ser. ICPC ’18. New York, NY, USA: Association for
Computing Machinery, May 2018, pp. 200–210.

[17] ——, “Deep code comment generation with hybrid lexical and syn-
tactical information,” Empirical Software Engineering, vol. 25, no. 3,
pp. 2179–2217, May 2020.

[18] W. U. Ahmad, S. Chakraborty, B. Ray, and K. W. Chang, “A
transformer-based approach for source code summarization,” arXiv,
2020.

[19] D. Zügner, T. Kirschstein, M. Catasta, J. Leskovec, and
S. Günnemann, “Language-agnostic representation learning of
source code from structure and context,” in International Con-
ference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=Xh5eMZVONGF

[20] S. Wang, M. Wen, B. Lin, and X. Mao, “Lightweight global and lo-
cal contexts guided method name recommendation with prior knowl-
edge,” in Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, ser. ESEC/FSE 2021. New York,
NY, USA: Association for Computing Machinery, Aug. 2021, pp.
741–753.

[21] M. Allamanis, E. T. Barr, S. Ducousso, and Z. Gao, “Typilus: neural
type hints,” in Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI
2020. New York, NY, USA: Association for Computing Machinery,
Jun. 2020, pp. 91–105.

[22] M.-A. Lachaux, B. Roziere, M. Szafraniec, and G. Lample, “DOBF:
A deobfuscation Pre-Training objective for programming languages,”
https://openreview.net/pdf?id=3ez9BSHTNT, accessed: 2022-12-26.

[23] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,

A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. Clement,
D. Drain, N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “Graph-
CodeBERT: Pre-training code representations with data flow,” in In-
ternational Conference on Learning Representations, 2021.

[24] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations us-
ing RNN Encoder–Decoder for statistical machine translation,” in
Proceedings of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, Oct. 2014, pp. 1724–1734.

[25] T. Luong, H. Pham, and C. D. Manning, “Effective approaches
to attention-based neural machine translation,” in Proceedings of
the 2015 Conference on Empirical Methods in Natural Language
Processing. Lisbon, Portugal: Association for Computational
Linguistics, Sep. 2015, pp. 1412–1421. [Online]. Available:
https://aclanthology.org/D15-1166

[26] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A general path-
based representation for predicting program properties,” ACM SIG-
PLAN Notices, vol. 53, no. 4, pp. 404–419, Jun. 2018.

[27] H. Peng, G. Li, W. Wang, Y. Zhao, and Z. Jin, “Inte-
grating tree path in transformer for code representation,” in
Advances in Neural Information Processing Systems, M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. W. Vaughan,
Eds., vol. 34. Curran Associates, Inc., 2021, pp. 9343–9354.
[Online]. Available: https://proceedings.neurips.cc/paper/2021/file/
4e0223a87610176ef0d24ef6d2dcde3a-Paper.pdf

[28] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
2019 IEEE/ACM 41st International Conference on Software Engi-
neering (ICSE). ieeexplore.ieee.org, May 2019, pp. 783–794.

[29] C. Lin, Z. Ouyang, J. Zhuang, J. Chen, H. Li, and R. Wu, “Improv-
ing code summarization with block-wise abstract syntax tree split-
ting,” in 2021 IEEE/ACM 29th International Conference on Program
Comprehension (ICPC). IEEE, May 2021.

[30] K. Zhang, W. Wang, H. Zhang, G. Li, and Z. Jin, “Learning to rep-
resent programs with heterogeneous graphs,” in Proceedings of the
30th IEEE/ACM International Conference on Program Comprehen-
sion, ser. ICPC ’22. New York, NY, USA: Association for Comput-
ing Machinery, Oct. 2022, pp. 378–389.

[31] B. Liu, T. Wang, X. Zhang, Q. Fan, G. Yin, and J. Deng, “A neural-
network based code summarization approach by using source code
and its call dependencies,” in ACM International Conference Pro-
ceeding Series. Association for Computing Machinery, Oct. 2019.

[32] H. Yonai, Y. Hayase, and H. Kitagawa, “Mercem: Method name rec-
ommendation based on call graph embedding,” in 2019 26th Asia-
Pacific Software Engineering Conference (APSEC), Dec. 2019, pp.
134–141.

[33] S. Gao, C. Gao, Y. He, J. Zeng, L. Y. Nie, X. Xia, and M. R. Lyu,
“Code structure guided transformer for source code summarization,”
ACM Trans. Softw. Eng. Methodol., Jul. 2022.

[34] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting ac-
curate method and class names,” in 2015 10th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ESEC/FSE
2015 - Proceedings, 2015, pp. 38–49.

[35] R. Compton, E. Frank, P. Patros, and A. Koay, “Embedding java
classes with code2vec: Improvements from variable obfuscation,” in
Msr 2020. ACM, 2020, p. 11.

[36] T. N. Kipf and M. Welling, “Semi-Supervised classification
with graph convolutional networks,” in International Confer-
ence on Learning Representations, 2017. [Online]. Available:
https://openreview.net/forum?id=SJU4ayYgl

[37] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neu-
ral Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[38] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic op-
timization,” 3rd International Conference on Learning Representa-
tions, ICLR 2015 - Conference Track Proceedings, pp. 1–15, 2015.

[39] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna:

A next-generation hyperparameter optimization framework,” in Pro-
ceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, ser. KDD ’19. New York,
NY, USA: Association for Computing Machinery, Jul. 2019, pp.
2623–2631.

[40] Paszke, Gross, Massa, Lerer, and others, “Pytorch: An imperative
style, high-performance deep learning library,” Adv. Neural Inf. Pro-
cess. Syst., 2019.

[41] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
graph library: A graph-centric, highly-performant package for graph
neural networks,” arXiv preprint arXiv:1909.01315, 2019.

