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Abstract We present a novel molecular graph generation method by auto-completing a privileged scaffold which

represents a core graph substructure step-by-step. We propose a generative GNN model thus providing the ability

to generate unseen molecular graphs outside the given training set. An edit-aware graph autocompletion paradigm

that follows the “substructure-by-substructure” process is designed to complete the scaffold queries in multiple

substructure adopt operations and allow meaningful edit operations to show the user’s intention. Such operations

enable the involvement of user decisions when interacting with a generative user-centered AI system, which differ-

entiates our work from existing single-run generation paradigms. Particularly, a Monte Carlo tree search (MCTS)

method is employed to satisfy the property requirements and navigate the search space when complying with users’

edit operations. Moreover, we design a top-k ranking function which considers the preferences on popularity and

diversity for different applications, such as query compositions for graph database and drug discovery respectively.

Such techniques enable human experts to synergistically interact with the generative models grounded on large data.
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1 Introduction

The ultimate goal of modern drug discovery is to find the

target molecules with desired chemical properties, while the

potential chemical space of drug-like compounds is 1023 −
1060. Until recent years, such chemical space exploration

was traditionally conducted by expert chemists and phar-

macologists, along with huge time and monetary cost being

devoted.

Visual graph query composition can assist modern drug

discovery, which did not attract much attention compared

with the success in the graph database community [3, 4,

10, 13, 25, 29, 30]. Instead of exploratory searching given a

subgraph query in graph databases and showing matched

graphs [29, 30], we prefer to use generative models to grow

novel molecules on the given subgraph. In the applications

of drug discovery, such a subgraph query is usually called a

scaffold (i.e., privileged or bioactive scaffold), and performs

as a core structure in the molecule to preserve the prefer-

able bioactivity properties. The generated novel molecular

graphs are supergraphs of the scaffold thus being guaranteed

to contain the scaffold to reveal the chemical properties. Fix-

ing the scaffold usually dramatically reduces the search space

of the desired drug thus saving experts’ time and cost.

Due to surprising success of deep neural network (DNN)

models these days, two categories of representations used in

DNN-based models emerge in the drug discovery domain.

(1) simplified molecular input line entry system (SMILES)

strings representation. Several early works [1,8,9,21,23] are

proposed to learn the SMILES grammar using RNN archi-

tectures and then generate corresponding SMILES strings

from the trained models. These methods have limitations to

learning the unrelated grammar and thus have low chemical

validity from generated SMILES. A recent trend is (2) undi-

rected labeled graph representation [27]. It is more natural

to learn the original graph structure by using graph neu-

ral networks (GNNs). This representation can easily achieve

higher chemical validity. In this work, we adopt the graph-

based representation along with GNN models as our gener-

ative models. GNN models are employed during the visual

graph query composition process to generate completed can-

didates. A motivating example is shown in Figure 1.（注1）

［Example 1］ In Figure 1, a user wants to design a new

molecule with a scaffold shown in user’s query. This

（注1）While we only show an example for the scenario of drug discovery,

our autocompletion system can be simply applied to traditional graph

query suggestions for graph databases.
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user first adopts a suggested candidate to complete the

polygon and then erases a vertex to show the label on

this vertex is different with his original intention. Then

the system sends the input to the learned GNN and re-

turns two candidates rank1 and rank2, with detailed

molecule properties (e.g., MW, logP and QED). The user

can interact with rank1 and rank2, such as adopt rank1

as a new query or even erase a part. The new query will

be taken as input and sent into the GNNs for further gen-

erations. This process repeats until a proper molecular

graph is found.

2 Related Work

Scaffold-based Molecular Graph Generation. The

idea of growing molecules on scaffolds using DNN models

did not receive too much attention except the ScaffoldVAE

model [20] and DeepScaffold [18]. ScaffoldVAE focused on

growing side chains from Bemis-Murcko scaffolds [2], which

is a special kind of scaffold that only preserves ring systems.

DeepScaffold is similar with ScaffoldVAE but includes all

subscaffolds in their dataset to provide the ability of growing

a full molecule from a much smaller subscaffold. However,

both above methods generate the final molecule in a sin-

gle step without allowing users to edit on the intermediate

graph to show their real intentions. This prevents the users,

especially for expert chemists, from utilizing their reliable

chemical intuitions and experience during the molecule de-

sign process. The generated molecules reported in both [20]

and [18] also proved to be far from practical molecules used

in real experimental chemistry.

In this work, we built a system GNNGAC (GNN-based

Graph Autocompletion), to allow users to edit the interme-

diate graph candidates during the molecule design process

in multiple steps, utilizing the edit operations to understand

the user’s real intention by adjusting the heuristic functions

employed in MCTS. We design an interactive substructure-

by-substructure adopt process to verify this idea. This pro-

cess guarantees the involvement of user decisions to interact

with a generative user-centered AI system, which differenti-

ates our work from previous studies that generate graphs in

a single run [18, 20]. Compared with generating a bunch of

cluttered results, involving user decisions can exploit human

capability, i.e., domain knowledge or experiences, to generate

much more insightful candidates. Also, to make the utmost

of graph training data set for efficient training, we design

scaffold-trie for data augmentation and efficiently train

the GNN from the computer memory. A pairwise Tanimoto

similarity-based top-k ranking algorithm is also proposed to

enhance the practicability. We demonstrate our system using

a real-world molecular dataset containing nearly one million

graphs. Users can draw various scaffold queries in our pre-

pared Web-based canvas and check the suggestion quality by

themselves.

3 Edit-Aware Graph Autocompletion

Scaffold input. Scaffolds are generally those subgraphs

carrying important characteristics of molecules. The basis

scaffolds of a molecule are usually the set of all unique ring

systems in the molecule, while a ring system is defined as

single/multiple rings sharing an internal bond. The graph

representing a molecule itself is called a full molecular graph.

Scaffolds can be extracted by utilizing general graph min-

ing algorithms [16], but as for molecular applications, we use

HierS [26] to obtain the scaffolds to keep in line with [18].

［Definition 1］（Scaffold input） Given a well-trained gener-

ative model M and a scaffold input q, the candidate

graphs generated by M is a set Mq = { g | q ⊆ g },
where q ⊆ g means q is a subgraph of g.

Definition 1 guarantees that the generated graphs {g | g ∈
Mq} are supergraphs of q.

Autoregressive GNNs. We adopt the GNN model used

in [18] and [19] for generating our graph candidates. The

entire model architecture is shown in Figure 2. Compared

with variational autoencoders (VAEs) or generative adver-

sarial networks (GANs), autoregressive GNNs have unique

ability to model edge dependencies, which guarantees the

nodes are generated in a sequential way. We adopt a

sequence-like graph knowledge representation used in [19]

which builds a full molecular graph in a sequential fashion

(⟨g0, t0⟩, ⟨g1, t1⟩, · · · , ⟨gN , tN ⟩), where gn is a specific graph

state (q equals g0 here) and tn is an action that transforms

gn → gn+1. Such a sequential molecular generative process

is essentially a Markov decision process thus being modeled

as either Markovian or recurrent using a global recurrent

neural network (RNN). In other words, the GNNs are used

to decide whether to generate a new atom or bond along

with its atom/bond type. In [19], three types of actions ti

are allowed to build a full molecule: (1) add an atom and

connect it with an existing atom v (with a probability pAv

), (2) connect an existing atom v to the new atom (with a

probability pCv ), and (3) terminate the generating process

(with a probability p∗ ). According to Figure 2, the MLP

layer outputs a tensor with a size |V |× (|A|+1)×|B|, where
V is the atom node set that v ∈ V , A is the atom type

set, and B is the bond type set. This tensor is further split

into [pA,pC ] = [tensorA|V |×|A|×|B|, tensor
C
|V |×1×|B|]. On the

other side, the MLP* layer outputs a scalar value p∗ to rep-

resent the probability of termination. Eventually, after a

softmax computation, {pA,pC , p∗} decides which action ti

should be taken when gn+1 ← ti(gn).
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user’s query

① Edit-aware graph autocompletion ② Graph partition method to generate training set

adopt erase

rank1: rank2:

G1:

G2:

G3:

(G1, G2)

(G1, G3)

(G2, G3)

training pair:

MW: …

logP: …

QED: …

MW: …

logP: …

QED: …

Figure 1 An Example of GNN-based Graph Autocompletion

Query reformulation. The composition process of an in-

termediate molecular graph can seem like a query reformula-

tion. The user interaction and behavior correlates much with

if they are satisfied with the intermediate molecular graphs.

For example, if one user adopt the intermediate graph with

no hesitation, she probably is very satisfied because the sug-

gestion matched her original intention. Conversely, if she

chooses to ignore all the provided suggestions but began to

add the incremental part on the current graph, she is unsat-

isfied and showed implicit negative feedback [31] to all sug-

gestions. If the user first adopt a suggestion but then begins

to modify (erase or replace or add) a part of the suggestion,

she is also unsatisfied with the provided suggestion. From

these interactions, we can learn the user’s preference or in-

tent. This is called learning the user’s preference online [31].

If we obtain an editing query log, we can model a likelihood

function and train such a preference vector of a new user to

avoid the cold-start problem.

User operations during query reformulation. While

users’ operations during the query reformulation of textual

query settings have been well studied [6, 7, 15, 17, 24], we

found that there are few works discussing the similar prob-

lem in the graph query settings. When a user operates on

a visual graph composition interface, there are some fun-

damental operations he/she can make. For example, edge

addition is the most fundamental one. Also, we consider

that it is natural to allow the user to slightly modify the

provided suggestion which produces the need for erasing and

replacing a part of the graph. Finally, the most essential op-

eration is adopting, which completes the current query by a

suggestion that accelerates the query composition dramat-
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Figure 2 Model Architecture

text query reformulation

Add Delete Keep Transform Others First Query

graph query reformulation

add erase adopt replace rollback start graph

Table 1 graph query reformulation operations and the counter-

parts in text query reformulation research

ically [30]. Without losing the possibility of extending in

the future, we consider four types of composition operation

OP = {add, adopt, erase, replace, rollback}. Particularly, we

call add, erase, and replace as edit to allow users to perform

specific operations on modifying the intermediate resulting

graphs. The edit that the user has performed is usually im-

plicit indicators of his/her real intention. After defining the

operations set that users can make on a graph query refor-

mulation, we find that the operations can have counterparts

in the traditional textual query reformulation operations [6].

We show the mappings in Table 1.

By adapting our edit-aware paradigm, the MCTS algo-

rithm is able to take advantage of users’ ideas, especially for

those chemical experts who possess drug design experience.

User preferences and satisfaction. Users’ preferences

show the search intent in the drug discovery. The users’ sat-

isfaction can be reflected in the sequential behavior during

the graph query reformulation interactions. There have been

some studies focusing on revealing the satisfactions from tex-

tual query reformulation interactions [5–7, 11, 12, 17]. Par-

ticularly in [7], two main reasons correlating to satisfaction

are reported:（ 1）Users left (clicked or adopted) the query

with satisfaction.（ 2）Being unsatisfied with most results,

users were forced to change the query. We can categorize

the sequential behaviors into satisfied and unsatisfied class

similarly with [17] in Table 2.

Adopt training. The operation adopt means the user ac-

cepts a provided graph suggestion q′ and incrementally adds

a substructure ∆q to current query q. To make sure q′ has

a strong correlation with the current query q, we need to

create the training pair (q, q′) and insert it into the train-
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Case 1 Satisfied adopt→MCTS

Case 2 Unsatisfied add→MCTS

Case 3 Unsatisfied adopt→ erase→MCTS

Case 4 Unsatisfied adopt→ replace→MCTS

Case 5 Unsatisfied adopt→ add→MCTS

Table 2 Satisfied and Unsatisfied sequential behaviors

ing set. In another word, a simplest case is scaffold → q

and molecule → q′. Nevertheless, when a relatively larger

molecule requires multiple steps to compose which results in

a long composition sequence, more fine-grained training pair

enumerations are expected, i.e., q and ∆q becomes much

smaller and the recursive case q′′ = q′ +∆q must be consid-

ered.

Data augmentation. Instead of only using (scaffold → q,

molecule → q′) pairs for training, we need to conduct data

augmentation to enumerate subgraphs to handle cases such

as q′′ = q+∆q+· · ·+∆q′ For graph structures, such enumer-

ations are impossible because of the combination explosion of

subgraphs. Therefore, we decide to only preserve subgraphs

with chemical significance (i.e., ring or chain systems). We

choose to store each basis scaffold q and their incremental

graphs q′′ = q + ∆q + · · · + ∆q′ in a trie structure accord-

ing to the super-subgraph relationship in memory and as-

sembly them as training pairs on-the-fly. The advantages

of building the scaffold-trie is multifold: (1) the trie is

memory-resident thus avoiding the I/O overhead which will

deteriorate the training time-cost. (2) the granularity of in-

crement size ∆q can be controlled flexibly without rebuilding

additional indices. (3) a single scaffold-trie can generate

training pairs for different GNN models’ training require-

ments beginning with different q for different problem set-

tings such as macromolecules. We set a uniform threshold

δ = |∆q| as a granularity constraint of incremental subgraphs

that grows from previous intermediate graph q. The value δ

can be fixed to a number or can be a variable as a ratio such

as 1/2 size of the full molecular graph. To efficiently utilize

the training set, we set δ = 1 by default, i.e., we put the pair

(q, q′′) into the training set when |∆q| = |q′′| − |q| >= 1.

Moreover, generating the training set only requires for a

single full traversal of the scaffold-trie thus leading to a

time complexity of O(|T |) where |T | represents the number

of nodes in the trie. The training pair set is then taken as

input fed into the GNN model for training purpose.

Property optimization and MCTS details. The real-

world drug discovery scenario usually places many property

requirements for the generated molecular graphs. For ex-

ample, a higher QED represents better drug-likeness consid-

ering the main molecular properties together, which means

that the molecular graph is more likely to be synthesized as a

Selection

complete a random rollout

 and obtain reward R

Expansion Simulation Backpropagation

… … …

backpropagate the reward 

along the traversal path

…

update stats

Figure 3 MCTS flow

useful drug. To improve the effectiveness of produced graphs

from the GNN model, we use MCTS to optimize the molec-

ular property such as QED, while considering the user’s edit

operation at the same time.

In MCTS, the root node of the search tree represents one

candidate molecular graph from the GNN model. The inter-

mediate node in the search tree is associated with a reward

Vi along with the visited times ni. Additionally, we also at-

tach a flag showing the action types, which will be used to

match the user’s last edit operation. These statistics will be

updated during the MCTS backpropagation. Figure 3 shows

the overall flow of all steps.

MCTS usually consists of four steps [14,22,28]:

• Selection: select the best node according to a heuristic

function.

• Expansion: expand the selected node by autocompleting

it with a subgraph building block.

• Simulation: conduct the recursive generation until en-

countering a leaf node (termination of the molecular

graph) and a final reward is gained according to its cor-

responding QED.

• Backpropagation: backpropagate the reward V on all

the visited nodes along the path that has traversed.

Particularly, there are many choices for the subgraph building

block. In [22], the work adopted an atom/bond-wise build-

ing block which means adding/removing an atom/bond in

the Expansion step. We slightly extend the action space

in [22] as {Atom addition, Atom removal, Bond addition,

Bond removal, Atom replacement, Bond replacement} . We

modify the strategy to select the node as:

child = argmax
i

Vi

ni
+ c

√
lnNi

ni
+ editbonus(editlast) (1)

where Vi represents the current value of the node, ni and

Ni are the visit times of node ni along with its parent Ni,

and c is the balance constant of exploration and exploitation.

editbonus will add a particular bonus weight to the child to

encourage a more aggressive strategy to select nodes with

similar actions as the user’s edit operations.

User-interactive MCTS. In our edit-aware paradigm, we

design a user-interactive variation of MCTS method to catch
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adopt→MCTS

…

add→MCTS

…

adopt→erase(or replace or add)→MCTS

…

satisfied not satisfied, add a new node

not satisfied, modify the suggestion

Figure 4 Interactive selection and preferred expansion.

the user’s query intents better. Figure 4 shows the differ-

ences. There are two strategies in this interactive variation

of MCTS.

interactive selection. As shown in Fig. 4, the red node rep-

resents the node selected. We allow users to select the ar-

bitrary node despite the score of Equation 1. This helps

fix some valuable subgraphs (functional groups) already ob-

tained, which are also being favored by users. When users

are not satisfied with all results, they can draw their own

scaffold, and then it will be inserted into the search tree as

the green node. When users just modify a part of the sug-

gestion, the modified graph will be derived as a new yellow

node.

preferred expansion The interaction behavior from the

user’s edition will be collected through the query logs. Then

the expansion step will consider the preferences by learning

the preference vectors and return different suggestions ac-

cording to different users.

Learning the preference vector by satisfactions.

rule set, lhs, rhs, similarity

4 Top-k Diversifying and Ranking Results

4 1 Diversification

After running either GNN inference or MCTS, we can ob-

tain our results set R. When |R| is a large number, displaying

all the graphs in R will only mess up the interface with sim-

ilar results. In this section, we propose a method to only

choose top-k diversified graphs out of R to form the final

result set R′ thus |R′| = k < |R|.
We take advantage of the metric proposed in [26], which

is called average pairwise Tanimoto (APT). Here, Tanimoto

means Tanimoto coefficient which is computed using molec-

ular fingerprint to describe how similar two molecular graphs

are. By adopting APT, we sum up the computed Tanimoto

coefficients between each pair of graphs appearing in R, and

divide the sum by total number of pairs as shown in Equa-

tion 2.

APT (R) =
1

|R|(|R| − 1)

|R|∑
i |=j

bi&j

bi + bj − bi&j
(2)

where |R| represents the size of result set R, bi(bj) is the num-

Algorithm 1: Top-k (R)

1 R′ ← ∅ ; /* final set R’ */

2 foreach ⟨i, j⟩ ∈ R do

3 Compute STanimoto(i, j);

4 Choose the largest STanimoto(i, j) and R′ ← R′ ∪ i ∪ j;

5 for n = 1 · · · k − 2 do

6 Find an i′ to make the util(R′ ∪ i′) the largest;

7 R′ ← R′ ∪ i′;

8 return R′;

ber of bits set to 1 in result i’s(j’s) fingerprint, bi&j means

the number of bits set to 1 in the the intersection of i and

j’s fingerprints.

4 2 Top-k Ranking

Along with diversification, we also need to rank the results

according to the substructure popularity to assist the users in

easily adding the most possible subgraphs. Here, we adapt a

statistic sel∆(q′) used in [30] which represents the number of

supergraphs of the increments (∆q′) in the database (train-

ing set) D. This can ensure that novel molecular graphs

generated will not have low ranks (which are not contained

in the database). Differently, we further extend the ∆q′ as

∆q′ ∪ q∆, where q∆ represents the smallest subgraph in q

which connects ∆q′ to avoid meaningless increments. Note

that sel∆(q′) can be efficiently computed offline using graph

indexing techniques proposed in [29].

The final ranking function (util) can be written as below:

util(R′) =
w

k

∑
q′∈R′

sel∆(q′) + (1− w)APT (R′) (3)

where a weight parameter w ∈ [0, 1] is added to balance the

popularity and diversity scores.

The value of w also has influences on different applica-

tions. For example, for traditional graph query suggestions

on database search, a larger w is expected to add more fre-

quent subgraph fragments to formulate the query quickly.

On the contrary, drug discovery requires a smaller w to im-

prove the diversity for generating novel molecules.

Finding the most optimal set R′ out of R means util(R′)

should be larger than any other alternative set R′′ with the

same set size. This process proved to be a NP-hard prob-

lem, which is a reduction from the maximum independent set

problem shown in [29]. Similar with [29], we use a greedy al-

gorithm (Algorithm 1) to obtain the optimal solution. When

|R′| = k, the time complexity of finding the APT(R′) is

O(k×|R|×STanimoto), where |R| represents the unique graphs
generated and STanimoto means the Tanimoto similarity com-

putation.
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Figure 5 A Screenshot

5 System Architecture

Front end. The front end is a Web-based graphical inter-

face for drawing queries and navigating through graph can-

didates. The editor is a canvas where users can input the

scaffold queries using various canned patterns or drawing

edge-by-edge. The user can click on the candidate to adopt

the completion and add it to the working canvas.

Back end. Five modules are included in the back end.

(1) GNN module, (2) MCTS module, (3) Graph generation

module, (4) Top-k ranking module, and (5) Query logging

module.

A demo interface. To verify the idea of multi-step graph

generations, we prepared a demonstration system. We set

up the system as shown in Figure 5. In Figure 5, button

MCTS means generating graphs by MCTS, and GNN

will trigger generations with a GNN model. After check-

ing the checkbox With Erase , the erase toolkit will collect

the erased information to adjust the heuristic functions in

MCTS. The operations of add and replace will also change

the behavior of MCTS as erase does. In this demo, we aim

to show that GNNGAC gives graph suggestions (right panels

in Figure 5) in an interactive way. The users can take the

reference of the chemical properties (MW, logP, QED) for

judgement in drug discovery.
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