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Abstract  Machine learning as a service (MLaaS) has become increasingly popular. However, MLaaS has privacy concerns 

attached. Privacy-preserving machine learning (PPML) solves privacy concerns through cryptographic techniques such as 

homomorphic encryption (HE). HE enables computations over ciphertexts without decryption. However, HE requires high 

computational costs and has limited operations. Consequently, many optimization algorithms, key components in PPML training 

over HE, are hard to be adopted. Therefore, adopting a suitable optimization algorithm for HE is important. This paper aims to 

decrease the training latency of a homomorphic encrypted deep neural network. We take advantage of Nesterov’s accelerated 

gradient descent and the SIMD computation capabilities of HE. 
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1. Introduction  

Deep learning (DL) has become a valuable method for 

solving multifaceted problems. Finance, speech/visual 

recognition, and health sciences are examples of fields 

influenced by this technology. However, to fully take 

advantage of DL, two prerequisites exist:  1) users must be 

capable of selecting adequate DL model and 

hyperparameters for a specific task ; and 2) users must have 

sufficient computational resources to execute a selected 

model. Machine Learning as a Service (MLaaS ), a cloud-

based service, is a solution that provides a layer of 

abstraction around the two prerequisites needed to take 

advantage of DL models successfully.  

Despite the advantages provided by MLaaS platforms, 

users with sensitive information such as medical or 

financial records are concerned by potential data leakages, 

which are becoming more common. In response to this 

concern, privacy-preserving machine learning (PPML) 

ensures that MLaaS parties’ resources , such as the user’s 

data or the service provider’s neural network model, are 

secure. With homomorphic encryption (HE) [1,2], we can 

assure data privacy and usability in a  MLaaS pipeline.  

Predictions with PPML over HE have achieved good 

results [3, 4, 5, 6]. Conversely, PPML over HE still  

struggles to train a DL model with encrypted data, having 

not yet achieved significant breakthroughs. The 

computational complexity of the operations involved in the 

DL’s tasks and the high computational cost of HE schemes 

are the main reasons behind the lack of research effort on 

this front.  

In 2019, Nandakumar et al. [7] was the first to achieve 

private training of neural networks non -interactively. They 

demonstrated a neural network that can train a mini-batch 

of 60 samples in 40 minutes meanwhile achieving an 

accuracy of 97.8% on the MNIST dataset . However, they 

used table-lookups to calculate the non-linear functions, 

severely hindering their work's latency.  

In 2020, Lou et al.  [8] improved the solutions proposed 

by Boemer et al.  [5] and achieved 98.8% accuracy on the 

MNIST dataset in 5 epochs, which took 8 days to execute 

over the prior state-of-the-art system [7]. They utilized 

CHIMERA [9], a key-switching scheme to solve the issues 

with BGV-based lookup tables. Although their results 

improved, they did not present the latency cost of 

switching between schemes in their results.  

The above works provided breakthroughs in non-

interactive DL training with HE, but there  is still  space for 

latency improvements. 

In this work, we further reduce the training latency of a 

homomorphically encrypted neural network model . Our 

main contributions are the following:  

• We introduce the usage of Nesterov’s  accelerated 

descent (NAG) instead of gradient descent (GD) . NAG 

is a promising optimization method because it  

accelerates training convergence, i .e., decreases the 

number of training iterations to achieve maximum 



 

 

accuracy compared to GD.  

• We take advantage of the SIMD capabilities presented 

in HE schemes to shorten the homomorphically 

encrypted DL training latency.  

The remainder of this paper is organized as follows:  

Section 2 presents the required background on neural 

networks and HE to build our solution. Section 3 shows a 

brief survey on PPML with HE solutions, highlighting the 

key achievements by works similar to ours . Section 4 

describes our proposed solution; namely, we show how we 

successfully apply NAG. Section 5 provides experimental 

results and discussion about the obtained results.  Finally, a 

conclusion is provided in Section 6.  

 

2. Preliminaries  

2.1 Fully homomorphic encryption (FHE)  

Homomorphic encryption (HE)  is a cryptographic 

technique that allows computations over ciphertexts 

without leaking its contents, where the results from the 

computations over ciphertexts are equivalent to the results 

from the computations over plaintexts. HE allows two 

operations to be performed on ciphertexts: addition and 

multiplication.  

Presently, fully homomorphic encryption (FHE) is a 

variant of HE that allows an arbitrary number of additions 

and multiplications. In an FHE scheme, when a plaintext is 

encrypted to a ciphertext, a random element, called noise, 

is added to the ciphertext so that it  is harder to reveal the 

original plaintext. Moreover, the noise in a ciphertext 

grows with every homomorphic operation. After a number 

of operations, the noise growth surpasses the ciphertext 

threshold, which results in rendering the ciphertext 

unusable.  

To overcome the noise accumulation problem, a special 

operation, called bootstrapping, is used. Bootstrapping 

comprises a ciphertext re-encryption using a different key; 

therefore, a new ciphertext with smaller noise than the 

original ciphertext i s obtained. Bootstrapping allows any 

ciphertext to be evaluated correctly; however, 

bootstrapping is a time and resource consuming operation.  

In this study, we adopt the CKKS scheme [2] , which can 

perform approximate computations on fixed-point real 

numbers, bootstrapping, and single -instruction multiple -

data (SIMD) computations on the ciphertext.  

 

2.2 Deep learning model  

Neural networks are multi -layered, weighted, and 

directed graphs where input nodes are connected to output 

nodes through several hidden layers. At the core of neural 

networks’ operations, matrix multiplications and dot 

products are performed. In deep neural network training, 

forward and backpropagation stages exist.  The training 

phase aims to learn parameters that  minimize the values 

from a pre-defined loss function.  

 

A network with 𝐿 layers is traversed sequentially from 

the input to the output layer. Equation (2.1) describes the 

forward propagation at the 𝑙-th layer. The output of the 𝑙-

th layer 𝑍𝑙 is obtained by applying a non-linear function  

𝜙 to the matrix product  of the weights from the current  

layer, 𝑊𝑙 , with the output from the (𝑙 − 1)-th layer, 𝑍𝑙−1. 

 

Equation (2.2) describes the gradient descent algorithm 

at 𝑡 -ath iteration/step with learning rate 𝛼  and gradient 

𝜕ℒ

𝜕𝑊𝑡+1
 , of the loss function ℒ . GD is an optimization 

algorithm aiming to find the local minimum of ℒ. During  

the backpropagation stage, a network is traversed 

sequentially, in reverse order, from the output to the input 

layer. The loss function result,  calculat ed at the end of the 

forward propagation, is passed backward so that the 

weights from each layer are updated according to their 

respective influence in the error result .  

 

2.3 Nesterov’s Accelerated Gradient (NAG)  

The training phase is utilized to find the weights of the 

hidden and output layers that minimize the values of a loss 

function. GD follows the negative gradient of an objective 

function to locate the local minimum of a  loss function. 

However, a GD’s limitation arises when the negative 

gradient direction rapidly oscillates: the zig-zagging 

problem. Zig-zagging slows down the loss function 

minimization, i .e. , unnecessary iterations are made to 

minimize a loss function adequately.  

A solution to the zig-zagging problem is the momentum 

method [10]. Yurii Nesterov proposed one of the first GD 

schemes using momentum in 1983 [11]. In 2013, Sutskever 

et al.  [12] popularized its application in neural network 

training. The update rules take the following for m shown 

in Equation (2.3) and Equation (2.4) . Equation (2.3) 

describes how the next step in the algorithm is taken, and 

Equation (2.4) describes the update of the weight matrix 

𝐻𝑙 = 𝜙(𝑊𝑙 ∙ 𝑍𝑙−1) ( 2.1 )  

𝑊𝑡+1 ≔ 𝑊𝑡+1 − 𝛼
𝜕ℒ

𝜕𝑊𝑡+1
 ( 2.2 )  



 

 

𝑊.  

In Equation (2.3), starting with 𝑉0 = 0 , the algorithm 

iterates for 𝑡 = 1,2, ⋯: 

𝑉𝑡+1 = 𝜇𝑉𝑡 − 𝛼∇ℒ(𝑊𝑡 + 𝜇𝑉𝑡) ( 2.3 ) 

𝑊𝑡+1 = 𝑊𝑡 + 𝑉𝑡+1 ( 2.4 ) 

, where 𝛼 is the learning rate; ∇ℒ is the direction of the 

descent; 𝜇  is the momentum coefficient; and 𝑉  is the 

velocity matrix, accumulating previous gradient values.  

The momentum term 𝜇𝑉𝑡 scales the value of previous 

gradients, determining how much the previous gradients 

influence the current value. 𝜇𝑉𝑡 makes the algorithm move 

faster, i.e., take bigger steps, when updates are consistently 

small and in the same direction, and move slow, i.e., take 

smaller steps,  when the gradient direction is significantly 

oscillating.  The gradient term ∇ℒ(𝑊𝑡 + 𝜇𝑉𝑡)  determines 

the descent direction. Compared with Equation (2.2) the 

gradient term from Equation (2.3) includes 𝜇𝑉𝑡 , which 

corrects the step taken at 𝜇𝑉𝑡 if  the update is poor, thus 

giving more stability to NAG.  

 

2.4 Least squares approximation of the sigmoid 

function  

Although NAG performs better than GD, other technical 

problems remain in implementing our solution. In Equation 

(2.1), the non-linear function 𝜙 is the biggest evaluation  

obstacle, since HE schemes only allow the evaluation of 

additions and multiplications.  

To make use of  the sigmoid function as our non-linear 

function, we can adopt one of two options : lookup tables 

or function approximation. Lookup tables have been used 

to train DNNs in [7, 8]. One of the disadvantages of lookup 

tables is the low resolution of its values. The low value 

resolution is caused by the limited number of entries  in the 

lookup table. Moreover, the time preparing the table lookup 

is long. Another solution is approximating the non -linear 

function [14]. Taylor polynomials have high accuracy 

values over small ranges , however, the error grows rapidly 

outside the specified range.   

Therefore, we use the least squares fitting polynomial to 

approximate the sigmoid function.  Least squares provides 

a sufficient approximation with a given interval. Figure 1 

plots the original sigmoid function, its least squares fitting 

polynomial (with degree 3) , and its Taylor approximation 

(of degree 3) within the interval [−8, 8]. It can be observed  

that the Taylor approximation provides an accurate 

approximation only around a small range, while the least 

squares fitting polynomial provides a more accurate  

approximation across a wider range.  

 

Figure 1 – Original sigmoid (blue), least squares fitting 

approximation (green), and Taylor approximation (red)  

 

3. Related Work  

This section describes  recent works that used non-

interactive HE neural networks.  We selected the non-

interactive HE approach for our neural network because it  

resembles the best MLaaS platforms. MLaaS platforms do 

not need the user to be online meanwhile the platform 

performs computations. Figure 2 outlines the common non-

interactive training process . An advantage of non-

interactive training is that a user can go offline after the 

user sends the data to the service provider. We explain the 

flow of the non-interactive training as follows :  

1. A user encrypts data with the user’s public key.  

2. The user shares the encrypted data and the public key 

to the service provider.  

3. The service provider initiates training with the 

encrypted data.  

4. After the training, the service provider  obtains the 

encrypted DL model parameters that are ideal for 

performing predictions. Note that the service provider  

can train the model without learning anything about 

the user’s data or the resulting model parameters that 

have been learned.  

5. The service provider  sends the encrypted DL model 

parameters to the user.  

6. The user decrypts the encrypted DL model parameters 

and obtains the unencrypted DL model parameters. 

Note that only the user can decrypt the encrypted data  

since only the user has access to the private key.  



 

 

 

Figure 2 – Neural network training system model  

 

Table 1 – Recent works on training DNNs over HE  

Paper  Scheme  
Datase

t 

Acc 

(%)  

#Epo

ch  

Tim

e 

Nandakumar 

et al.  [7]  
BGV [13]  MNIST  97.8  50  

13.4 

years  

Low et al. 

[8]  

CHIMERA 

[9]  
MNIST  98.8  5 

8 

days  

 

Table 1 summarizes recent research on DL training with 

FHE. The problem with existing studies is that they do not 

achieve optimal latency results for training. Low et al. [8] 

improve previous state-of-the-art results [7] by achieving 

higher accuracy within fewer training iterations , but (1) 

they use the same optimization algorithm as [ 7] to perform 

training, and (2) they do not focus on packing the input 

data effectively to decrease latency. Thus, a new method is 

needed to obtain enough accuracy in a shorter time.  

 

4. Proposed method  

In this work, we propose to reduce the latency of a 

homomorphically encrypted deep neural network with HE, 

using the non-interactive HE approach. Our methodology 

combines the optimization algorithm NAG to decrease the 

number of training iterations needed to achieve maximum 

accuracy of a model and an efficient ciphertext packing 

method that takes advantage of CKKS’s SIMD capabilities.  

This section is organized as follows:  we explain how we 

adapt NAG to our deep neural network in Section 4.1, and 

in Section 4.2 we describe the ciphertext packing method 

utilized in our experiment.  

 

4.1 Evaluation of NAG  

Algorithm 1 shows how the  encrypted training with 

NAG is executed. First , the service provider receives two 

sets of ciphertexts, |𝑋|  and |𝑌| , corresponding to the 

encryption of the training set and its labels , respectively. 

The service provider initializes the encrypted weights |𝑊| 

randomly, and sets the encrypted momentum values |𝑉| to  

zero. For each layer 𝑙 , the output of the layer, |𝐻𝑙| , is 

calculated by the polynomial approximation of the sigmoid 

function 𝜙′ .  The input of 𝜙′ is the result from the matrix 

multiplication between the encrypted weights at layer 𝑙 , 

|𝑊𝑙|, and the output from the previous layer |𝐻𝑙−1|. Note 

that the values of |𝐻0|  are assgined to |𝑋| . After 

completing the traversal of the neural network from the 

input to the output layer, the error result 𝒥 is calculated  

by the mean squared error between |𝐻𝐿| and |𝑌|.  

With the obtained error values , the algorithm traverses 

each layer sequentially in reverse order, updating each 

layer ’s weights with regard to the error value. During the 

updates at each layer, the encrypted momentum values are 

calculated using Equation (2.3) before updating the 

weights using Equation (2.4).  

It is expected for NAG to achieve maximum accuracy in 

fewer steps compared to GD. Concretely, after 𝑡 iterations, 

NAG will have a rate of convergence of 𝑂(1 𝑡2⁄ ) compared 

to 𝑂(1 𝑡⁄ ) in GD. However, NAG has higher computational 

complexity in each hidden layer compared to GD. The 

increased complexity from NAG is caused by additional 

calculations. Specifically the scaled momentum values, 

and the gradients of the weight values with the respective 

scaled momentum values. 

Algorithm 1:  Encrypted NAG training  

1:  Input:  encrypted training samples |𝑋|, encrypted 

training labels |𝑌| , learning rate 𝛼 , momentum 

parameter 𝜇, the number of iterations 𝑇, number 

of layers 𝐿, and a polynomial approximation of 

sigmoid function 𝜙′  

2:  Output: encrypted weights |𝑊1|, |𝑊2|, ⋯ , |𝑊𝑙| 
3:  |𝑊1|, |𝑊2|, ⋯ , |𝑊𝑙| ← Random initialization  

4:  |𝑉1|, |𝑉2|, ⋯ , |𝑉𝑙|  ← Initialize to zero  

5:  |𝐻0| ≔ |𝑋| 
6:  for 𝑡 ← 1 to 𝑇 do  

7:   for 𝑙 ← 1 to 𝐿 do  

8:    |𝐻𝑙| = 𝜙′ (|𝐻l−1 ∙ 𝑊𝑙|) 

9:   end for  

10:   𝒥 ← 𝐿𝑜𝑠𝑠 

11:   for 𝑙 ← 𝐿 to 1 do  

12:    |𝑉𝑡+1
𝑙 | ← |𝜇𝑉𝑡

𝑙| − |𝛼𝛻𝒥(|𝑊𝑡
𝑙 + 𝜇𝑉𝑡

𝑙|)| 
13:    |𝑊𝑡+1

𝑙 | ≔ |𝑊𝑡
𝑙 +  𝑉𝑡+1

𝑙 |  

14:   end for  

15:  end for  

16:  return |𝑊1|, |𝑊2|, ⋯ , |𝑊𝑙 | 

 



 

 

4.2 Ciphertext packing  

As mentioned in Section 2.1, we utilize the SIMD 

capabilities of HE. Specifically, we take advantage of HE’s 

packing capabilities. Ciphertext packing consists of 

encrypting a vector of 𝑛 plaintexts into a single ciphertext. 

Each plaintext element is stored separately in a ciphertext 

slot, and ciphertext operations (additions and 

multiplications) are performed slot-wise, i.e.,  element-

wise.  

In this work, we adapt the packing algorithm ideas of 

Han et al.  [15] and Aharoni et al.  [16]. Han et al.’s 

algorithm [15] allows us to partition a matrix of data into 

smaller sub-matrixes and then encrypt the sub-matrices 

with multiple ciphertexts. Aharoni et al.’s algorithms [16] 

extend the matrix vector multiplication  algorithm from 

[15] to include matrix multiplications.  

Given that the input data is split  into batches, a batch 

can be considered to have 𝑛 samples, and each sample to 

have 𝑚 features. Thus, a batch 𝑋 can be represented as a 

𝑛 × 𝑚  matrix. Then, 𝑋  is divided into multiple 𝑓 × 𝑔 

sub-matrices 𝑋𝑖,𝑗   for 0 ≤ 𝑖 < ⌈𝑛 𝑓⁄ ⌉  and 0 ≤ 𝑗 < ⌈𝑚 𝑔⁄ ⌉ . 

The sub-matrices are supposed to be packed into a single 

ciphertext; therefore, 𝑓  and 𝑔  are set to utilize the 

maximum number of 𝑠𝑙𝑜𝑡𝑠 in a ciphertext.   

Figure 3 shows an example of a training dataset 

containing 3 samples with 6 features. The dataset is 

partitioned into 4 sub-matrices and then encrypted by 

ciphertexts containing 8 slots each. Note that the slots that 

are not utilized (light blue squares) are set to zero.  

 

 

Figure 3 – Partition of a matrix (left)  followed by 

encryption through multiple ciphertexts  

 

4.3 Ciphertext multipl ication  

Matrix multiplications are some of the most time-

consuming operations in the HE. To efficiently perform 

matrix multiplications, we utilized the packing scheme 

mentioned in the previous section.   

To exemplify the underlying steps in matrix 

multiplication, we utilize an example of how matrix -vector 

multiplication is performed on Figure 4. The following 

steps can be generalized to matrix multiplications  [16]. We 

pack and encrypt a matrix 𝑀 ∈ ℝ3×6 and a vector 𝑣 ∈ ℝ1×6. 

Note that the number of features in M must match the 

number of columns in 𝑣. The values in 𝑣 are replicated 

(dark blue squares) to match the dimensions from 𝑀. 

Once the data are packed, we compute element -wise 

multiplication over the corresponding ciphertexts. The 

results (yellow squares) are obtained by repeating the 

rotation and addition  operations log2(# 𝑠𝑙𝑜𝑡𝑠). Note that  

the values marked with “*” (light grey squares) are 

unknown/garbage values. The unknown values can be 

cleaned by multiplication with zero vectors.  

 

 

Figure 4 – Matrix vector multiplication  

 

5. Experimental evaluation  

We conducted experiments to evaluate NAG against GD 

utilizing the MNIST [17] dataset. We compared NAG and 

GD using two packing algorithms: the packing algorithm 

from Nandakumar et al.  and the packing algorithm from 

Han et al. and Aharoni et al.  

 

5.1 Dataset  

The MNIST dataset for handwritten digit recognition 

consists of 60,000 training samples and 10,000 testing 

samples. Each image contains a handwritten number 

between 0 and 9. The images of the MNIST dataset have a 

gray-scale 28x28 pixel resolution, with one handwritten 

digit located at the center of the image. Each image is 

labeled with a class ranging from 0 to 9.  

 

5.2 Network architecture  

The neural network in our experiment followed the same 

architecture used by Nandakumar et al.’s NN2 [7], which 

consists of a 3 layer fully-connected network with 64 

neurons on the input layer, 32 neurons on the first hidden 

layer, 16 layers on the second hidden layer, and 10 neurons 

on the output layer.   

 

5.3 Evaluation method  

We implemented the homomorphically encrypted deep 

neural network over HE using HEAAN’s [ 18] CKKS 

scheme.  

When performing the experiments, two configurations 

were prepared for the target neural network: baseline and 

proposed.  The baseline configuration utilizes the packing 



 

 

and matrix multiplication algorithms used by Nandakumar 

et al., and the proposed configuration uses the partitioned 

packing and matrix multiplications  algorithms described in 

Section 4.2. The configurations’ CKKS parameters are 

shown in Table 2. For both configurations , we set the 

rescaling factor to 23, and the modulus size to 600. For the 

baseline configuration, we set the number of ciphertext 

slots to 64, and for the proposed configuration, we set the 

number of slots to 2,048.  

Similar to Nandakumar et al.,  each image from the 

MNIST dataset was compressed by cropping the central 

24x24 pixels and rescaling by a factor of 1 3⁄   using 

bicubic interpolation , thus obtaining an 8x8 pixel image 

representation.  

We evaluated the execution time of the training 

algorithm, the generation of weights , and the matrix 

multiplication operation. Note that the execution time was 

averaged by three continuous executions after the first 

execution.  

We used a server which had a Xeon Platinum 8280 (2.7 

GHz) with 56 cores, and 1.5TB of main memory for 

training over HE.  

 

Table 2 – CKKS parameters for the experiment  

Packing 

algorithm  

Rescaling 

factor  
Level  

Modulus 

size  
# slots  

Baseline  23  34  600  64  

Proposed  23  34  600  2,048  

 

5.4 Evaluation results  

Table 3 shows the training execution time results over 

the MNIST dataset. The measurements were performed 

using 56 threads with NTL for one training iteration. One 

training iteration is enough to estimate the overall 

execution time of the training algorithm.  

When using NAG, 1 training iteration took 8.35 minutes, 

5.52 times faster than the baseline method using NAG. 

When using GD, 1 training iteration took 7.50 minutes, 

4.54 times faster than the baseline method.  

Table 4 shows the execution time encrypting the 

generated weights. The proposed algorithm is has lower 

execution time than the baseline algorithm because the 

proposed method’s weight encryption algorithm is the same 

as the encryption algorithm of the inputs. In contrast,  the 

baseline method had each element on a weight matrix 

encrypted individually, and the input data is encrypted by 

row. Moreover, the proposed packing algorithm has  smaller  

latency when performing matrix multiplications in 

different layers.  

Table 5 shows the latency of matrix multiplications  with 

one mini-batch. The proposed packing algorithm 

performed 9.8 times faster matrix multiplications on 

hidden layer 1 compared to the baseline. This is because 

the proposed packing algorithm requires 1 multiplication 

and at most log2(# 𝑠𝑙𝑜𝑡𝑠)  rotations during matrix  

multiplications. In contrast, the baseline packing algorithm 

requires at most 𝑛2  multiplications when performiong 

matrix multiplications. In comparison to ciphertext 

rotations, homomorphic multiplications are 

computationally more expensive rotations , thus, the lesser 

multiplications, the lower the latency.  

 

Table 3 – Execution time of 1 training iteration with 1 

mini-batch (containing 64 samples)  

Optimization 

algorithm  

Baseline  Proposed  

Training latency (min)  

GD  34.07  7.50  

NAG  46.15  8.35  

 

Table 4 – Execution time of weight encryption  

Packing 

algorithm  

Hidden 

layer 1 

(sec)  

Hidden 

layer 2 

(sec)  

Output 

layer (sec)  

Baseline  96.34  22.02  10.86  

Proposed  23.30   4.72   4.68  

 

Table 5 – Execution time of matrix multiplications  

Packing 

algorithm  

Hidden 

layer 1 

(sec)  

Hidden 

layer 2 

(sec)  

Output 

layer (sec)  

Baseline  392.85  68.69  38.57  

Proposed  40.05  26.72  20.29  

 

6. Conclusion 

This paper proposed a set of methods to decrease the 

training latency of a homomorphically encrypted deep 

neural network. Nesterov’s accelerated gradient (NAG) 

descent was used instead of gradient descent (GD) to 

decrease the number of iterations and to achieve maximum 

accuracy in the training phase ; and the packing algorithms 

from Han et al. and Aharoni et al . were adapted into our 

solution.  

The experimental evaluation was conducted on a 

compressed MNIST dataset, confirming that the training 

latency was lower than  a neural network packing the data 

by rows. Compared to the baseline packing algorithm, the 

proposed packing algorithm can decrease the neural 

network’s latency in weight generation and matrix 

multiplication.  

Future work includes  1) conducting the accuracy 



 

 

comparison between GD and NAG after the homomorphic 

training, and 2) evaluating the training latency of NAG 

with the proposed packing solution on the MNIST dataset 

without compression  
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