

DEIM Forum 2023 5b-9-1

Latency Improvement of

Homomorphic Encrypted Deep Neural Network Training

Tiago Monteiro† Takuya Suzuki‡ and Hayato Yamana§

†‡Graduate School of Fundamental Science and Engineering 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan

§ Faculty of Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan

E-mail: †§ {tiago, t-suzuki, yamana} @yama.info.waseda.ac.jp

Abstract Machine learning as a service (MLaaS) has become increasingly popular. However, MLaaS has privacy concerns

attached. Privacy-preserving machine learning (PPML) solves privacy concerns through cryptographic techniques such as

homomorphic encryption (HE). HE enables computations over ciphertexts without decryption. However, HE requires high

computational costs and has limited operations. Consequently, many optimization algorithms, key components in PPML training

over HE, are hard to be adopted. Therefore, adopting a suitable optimization algorithm for HE is important. This paper aims to

decrease the training latency of a homomorphic encrypted deep neural network. We take advantage of Nesterov’s accelerated

gradient descent and the SIMD computation capabilities of HE.

Keywords: Privacy-preserving machine learning, Homomorphic encryption, Deep neural network training, Nesterov’s

accelerated gradient, SIMD computation

1. Introduction

Deep learning (DL) has become a valuable method for

solving multifaceted problems. Finance, speech/visual

recognition, and health sciences are examples of fields

influenced by this technology. However, to fully take

advantage of DL, two prerequisites exist: 1) users must be

capable of selecting adequate DL model and

hyperparameters for a specific task ; and 2) users must have

sufficient computational resources to execute a selected

model. Machine Learning as a Service (MLaaS), a cloud-

based service, is a solution that provides a layer of

abstraction around the two prerequisites needed to take

advantage of DL models successfully.

Despite the advantages provided by MLaaS platforms,

users with sensitive information such as medical or

financial records are concerned by potential data leakages,

which are becoming more common. In response to this

concern, privacy-preserving machine learning (PPML)

ensures that MLaaS parties’ resources , such as the user’s

data or the service provider’s neural network model, are

secure. With homomorphic encryption (HE) [1,2], we can

assure data privacy and usability in a MLaaS pipeline.

Predictions with PPML over HE have achieved good

results [3, 4, 5, 6]. Conversely, PPML over HE still

struggles to train a DL model with encrypted data, having

not yet achieved significant breakthroughs. The

computational complexity of the operations involved in the

DL’s tasks and the high computational cost of HE schemes

are the main reasons behind the lack of research effort on

this front.

In 2019, Nandakumar et al. [7] was the first to achieve

private training of neural networks non -interactively. They

demonstrated a neural network that can train a mini-batch

of 60 samples in 40 minutes meanwhile achieving an

accuracy of 97.8% on the MNIST dataset . However, they

used table-lookups to calculate the non-linear functions,

severely hindering their work's latency.

In 2020, Lou et al. [8] improved the solutions proposed

by Boemer et al. [5] and achieved 98.8% accuracy on the

MNIST dataset in 5 epochs, which took 8 days to execute

over the prior state-of-the-art system [7]. They utilized

CHIMERA [9], a key-switching scheme to solve the issues

with BGV-based lookup tables. Although their results

improved, they did not present the latency cost of

switching between schemes in their results.

The above works provided breakthroughs in non-

interactive DL training with HE, but there is still space for

latency improvements.

In this work, we further reduce the training latency of a

homomorphically encrypted neural network model . Our

main contributions are the following:

• We introduce the usage of Nesterov’s accelerated

descent (NAG) instead of gradient descent (GD) . NAG

is a promising optimization method because it

accelerates training convergence, i .e., decreases the

number of training iterations to achieve maximum

accuracy compared to GD.

• We take advantage of the SIMD capabilities presented

in HE schemes to shorten the homomorphically

encrypted DL training latency.

The remainder of this paper is organized as follows:

Section 2 presents the required background on neural

networks and HE to build our solution. Section 3 shows a

brief survey on PPML with HE solutions, highlighting the

key achievements by works similar to ours . Section 4

describes our proposed solution; namely, we show how we

successfully apply NAG. Section 5 provides experimental

results and discussion about the obtained results. Finally, a

conclusion is provided in Section 6.

2. Preliminaries

2.1 Fully homomorphic encryption (FHE)

Homomorphic encryption (HE) is a cryptographic

technique that allows computations over ciphertexts

without leaking its contents, where the results from the

computations over ciphertexts are equivalent to the results

from the computations over plaintexts. HE allows two

operations to be performed on ciphertexts: addition and

multiplication.

Presently, fully homomorphic encryption (FHE) is a

variant of HE that allows an arbitrary number of additions

and multiplications. In an FHE scheme, when a plaintext is

encrypted to a ciphertext, a random element, called noise,

is added to the ciphertext so that it is harder to reveal the

original plaintext. Moreover, the noise in a ciphertext

grows with every homomorphic operation. After a number

of operations, the noise growth surpasses the ciphertext

threshold, which results in rendering the ciphertext

unusable.

To overcome the noise accumulation problem, a special

operation, called bootstrapping, is used. Bootstrapping

comprises a ciphertext re-encryption using a different key;

therefore, a new ciphertext with smaller noise than the

original ciphertext i s obtained. Bootstrapping allows any

ciphertext to be evaluated correctly; however,

bootstrapping is a time and resource consuming operation.

In this study, we adopt the CKKS scheme [2] , which can

perform approximate computations on fixed-point real

numbers, bootstrapping, and single -instruction multiple -

data (SIMD) computations on the ciphertext.

2.2 Deep learning model

Neural networks are multi -layered, weighted, and

directed graphs where input nodes are connected to output

nodes through several hidden layers. At the core of neural

networks’ operations, matrix multiplications and dot

products are performed. In deep neural network training,

forward and backpropagation stages exist. The training

phase aims to learn parameters that minimize the values

from a pre-defined loss function.

A network with 𝐿 layers is traversed sequentially from

the input to the output layer. Equation (2.1) describes the

forward propagation at the 𝑙-th layer. The output of the 𝑙-

th layer 𝑍𝑙 is obtained by applying a non-linear function

𝜙 to the matrix product of the weights from the current

layer, 𝑊𝑙 , with the output from the (𝑙 − 1)-th layer, 𝑍𝑙−1.

Equation (2.2) describes the gradient descent algorithm

at 𝑡 -ath iteration/step with learning rate 𝛼 and gradient

𝜕ℒ

𝜕𝑊𝑡+1
 , of the loss function ℒ . GD is an optimization

algorithm aiming to find the local minimum of ℒ. During

the backpropagation stage, a network is traversed

sequentially, in reverse order, from the output to the input

layer. The loss function result, calculat ed at the end of the

forward propagation, is passed backward so that the

weights from each layer are updated according to their

respective influence in the error result .

2.3 Nesterov’s Accelerated Gradient (NAG)

The training phase is utilized to find the weights of the

hidden and output layers that minimize the values of a loss

function. GD follows the negative gradient of an objective

function to locate the local minimum of a loss function.

However, a GD’s limitation arises when the negative

gradient direction rapidly oscillates: the zig-zagging

problem. Zig-zagging slows down the loss function

minimization, i .e. , unnecessary iterations are made to

minimize a loss function adequately.

A solution to the zig-zagging problem is the momentum

method [10]. Yurii Nesterov proposed one of the first GD

schemes using momentum in 1983 [11]. In 2013, Sutskever

et al. [12] popularized its application in neural network

training. The update rules take the following for m shown

in Equation (2.3) and Equation (2.4) . Equation (2.3)

describes how the next step in the algorithm is taken, and

Equation (2.4) describes the update of the weight matrix

𝐻𝑙 = 𝜙(𝑊𝑙 ∙ 𝑍𝑙−1) (2.1)

𝑊𝑡+1 ≔ 𝑊𝑡+1 − 𝛼
𝜕ℒ

𝜕𝑊𝑡+1
 (2.2)

𝑊.

In Equation (2.3), starting with 𝑉0 = 0 , the algorithm

iterates for 𝑡 = 1,2, ⋯:

𝑉𝑡+1 = 𝜇𝑉𝑡 − 𝛼∇ℒ(𝑊𝑡 + 𝜇𝑉𝑡) (2.3)

𝑊𝑡+1 = 𝑊𝑡 + 𝑉𝑡+1 (2.4)

, where 𝛼 is the learning rate; ∇ℒ is the direction of the

descent; 𝜇 is the momentum coefficient; and 𝑉 is the

velocity matrix, accumulating previous gradient values.

The momentum term 𝜇𝑉𝑡 scales the value of previous

gradients, determining how much the previous gradients

influence the current value. 𝜇𝑉𝑡 makes the algorithm move

faster, i.e., take bigger steps, when updates are consistently

small and in the same direction, and move slow, i.e., take

smaller steps, when the gradient direction is significantly

oscillating. The gradient term ∇ℒ(𝑊𝑡 + 𝜇𝑉𝑡) determines

the descent direction. Compared with Equation (2.2) the

gradient term from Equation (2.3) includes 𝜇𝑉𝑡 , which

corrects the step taken at 𝜇𝑉𝑡 if the update is poor, thus

giving more stability to NAG.

2.4 Least squares approximation of the sigmoid

function

Although NAG performs better than GD, other technical

problems remain in implementing our solution. In Equation

(2.1), the non-linear function 𝜙 is the biggest evaluation

obstacle, since HE schemes only allow the evaluation of

additions and multiplications.

To make use of the sigmoid function as our non-linear

function, we can adopt one of two options : lookup tables

or function approximation. Lookup tables have been used

to train DNNs in [7, 8]. One of the disadvantages of lookup

tables is the low resolution of its values. The low value

resolution is caused by the limited number of entries in the

lookup table. Moreover, the time preparing the table lookup

is long. Another solution is approximating the non -linear

function [14]. Taylor polynomials have high accuracy

values over small ranges , however, the error grows rapidly

outside the specified range.

Therefore, we use the least squares fitting polynomial to

approximate the sigmoid function. Least squares provides

a sufficient approximation with a given interval. Figure 1

plots the original sigmoid function, its least squares fitting

polynomial (with degree 3) , and its Taylor approximation

(of degree 3) within the interval [−8, 8]. It can be observed

that the Taylor approximation provides an accurate

approximation only around a small range, while the least

squares fitting polynomial provides a more accurate

approximation across a wider range.

Figure 1 – Original sigmoid (blue), least squares fitting

approximation (green), and Taylor approximation (red)

3. Related Work

This section describes recent works that used non-

interactive HE neural networks. We selected the non-

interactive HE approach for our neural network because it

resembles the best MLaaS platforms. MLaaS platforms do

not need the user to be online meanwhile the platform

performs computations. Figure 2 outlines the common non-

interactive training process . An advantage of non-

interactive training is that a user can go offline after the

user sends the data to the service provider. We explain the

flow of the non-interactive training as follows :

1. A user encrypts data with the user’s public key.

2. The user shares the encrypted data and the public key

to the service provider.

3. The service provider initiates training with the

encrypted data.

4. After the training, the service provider obtains the

encrypted DL model parameters that are ideal for

performing predictions. Note that the service provider

can train the model without learning anything about

the user’s data or the resulting model parameters that

have been learned.

5. The service provider sends the encrypted DL model

parameters to the user.

6. The user decrypts the encrypted DL model parameters

and obtains the unencrypted DL model parameters.

Note that only the user can decrypt the encrypted data

since only the user has access to the private key.

Figure 2 – Neural network training system model

Table 1 – Recent works on training DNNs over HE

Paper Scheme
Datase

t

Acc

(%)

#Epo

ch

Tim

e

Nandakumar

et al. [7]
BGV [13] MNIST 97.8 50

13.4

years

Low et al.

[8]

CHIMERA

[9]
MNIST 98.8 5

8

days

Table 1 summarizes recent research on DL training with

FHE. The problem with existing studies is that they do not

achieve optimal latency results for training. Low et al. [8]

improve previous state-of-the-art results [7] by achieving

higher accuracy within fewer training iterations , but (1)

they use the same optimization algorithm as [7] to perform

training, and (2) they do not focus on packing the input

data effectively to decrease latency. Thus, a new method is

needed to obtain enough accuracy in a shorter time.

4. Proposed method

In this work, we propose to reduce the latency of a

homomorphically encrypted deep neural network with HE,

using the non-interactive HE approach. Our methodology

combines the optimization algorithm NAG to decrease the

number of training iterations needed to achieve maximum

accuracy of a model and an efficient ciphertext packing

method that takes advantage of CKKS’s SIMD capabilities.

This section is organized as follows: we explain how we

adapt NAG to our deep neural network in Section 4.1, and

in Section 4.2 we describe the ciphertext packing method

utilized in our experiment.

4.1 Evaluation of NAG

Algorithm 1 shows how the encrypted training with

NAG is executed. First , the service provider receives two

sets of ciphertexts, |𝑋| and |𝑌| , corresponding to the

encryption of the training set and its labels , respectively.

The service provider initializes the encrypted weights |𝑊|

randomly, and sets the encrypted momentum values |𝑉| to

zero. For each layer 𝑙 , the output of the layer, |𝐻𝑙| , is

calculated by the polynomial approximation of the sigmoid

function 𝜙′ . The input of 𝜙′ is the result from the matrix

multiplication between the encrypted weights at layer 𝑙 ,

|𝑊𝑙|, and the output from the previous layer |𝐻𝑙−1|. Note

that the values of |𝐻0| are assgined to |𝑋| . After

completing the traversal of the neural network from the

input to the output layer, the error result 𝒥 is calculated

by the mean squared error between |𝐻𝐿| and |𝑌|.

With the obtained error values , the algorithm traverses

each layer sequentially in reverse order, updating each

layer ’s weights with regard to the error value. During the

updates at each layer, the encrypted momentum values are

calculated using Equation (2.3) before updating the

weights using Equation (2.4).

It is expected for NAG to achieve maximum accuracy in

fewer steps compared to GD. Concretely, after 𝑡 iterations,

NAG will have a rate of convergence of 𝑂(1 𝑡2⁄) compared

to 𝑂(1 𝑡⁄) in GD. However, NAG has higher computational

complexity in each hidden layer compared to GD. The

increased complexity from NAG is caused by additional

calculations. Specifically the scaled momentum values,

and the gradients of the weight values with the respective

scaled momentum values.

Algorithm 1: Encrypted NAG training

1: Input: encrypted training samples |𝑋|, encrypted

training labels |𝑌| , learning rate 𝛼 , momentum

parameter 𝜇, the number of iterations 𝑇, number

of layers 𝐿, and a polynomial approximation of

sigmoid function 𝜙′

2: Output: encrypted weights |𝑊1|, |𝑊2|, ⋯ , |𝑊𝑙|
3: |𝑊1|, |𝑊2|, ⋯ , |𝑊𝑙| ← Random initialization

4: |𝑉1|, |𝑉2|, ⋯ , |𝑉𝑙| ← Initialize to zero

5: |𝐻0| ≔ |𝑋|
6: for 𝑡 ← 1 to 𝑇 do

7: for 𝑙 ← 1 to 𝐿 do

8: |𝐻𝑙| = 𝜙′ (|𝐻l−1 ∙ 𝑊𝑙|)

9: end for

10: 𝒥 ← 𝐿𝑜𝑠𝑠

11: for 𝑙 ← 𝐿 to 1 do

12: |𝑉𝑡+1
𝑙 | ← |𝜇𝑉𝑡

𝑙| − |𝛼𝛻𝒥(|𝑊𝑡
𝑙 + 𝜇𝑉𝑡

𝑙|)|
13: |𝑊𝑡+1

𝑙 | ≔ |𝑊𝑡
𝑙 + 𝑉𝑡+1

𝑙 |

14: end for

15: end for

16: return |𝑊1|, |𝑊2|, ⋯ , |𝑊𝑙 |

4.2 Ciphertext packing

As mentioned in Section 2.1, we utilize the SIMD

capabilities of HE. Specifically, we take advantage of HE’s

packing capabilities. Ciphertext packing consists of

encrypting a vector of 𝑛 plaintexts into a single ciphertext.

Each plaintext element is stored separately in a ciphertext

slot, and ciphertext operations (additions and

multiplications) are performed slot-wise, i.e., element-

wise.

In this work, we adapt the packing algorithm ideas of

Han et al. [15] and Aharoni et al. [16]. Han et al.’s

algorithm [15] allows us to partition a matrix of data into

smaller sub-matrixes and then encrypt the sub-matrices

with multiple ciphertexts. Aharoni et al.’s algorithms [16]

extend the matrix vector multiplication algorithm from

[15] to include matrix multiplications.

Given that the input data is split into batches, a batch

can be considered to have 𝑛 samples, and each sample to

have 𝑚 features. Thus, a batch 𝑋 can be represented as a

𝑛 × 𝑚 matrix. Then, 𝑋 is divided into multiple 𝑓 × 𝑔

sub-matrices 𝑋𝑖,𝑗 for 0 ≤ 𝑖 < ⌈𝑛 𝑓⁄ ⌉ and 0 ≤ 𝑗 < ⌈𝑚 𝑔⁄ ⌉ .

The sub-matrices are supposed to be packed into a single

ciphertext; therefore, 𝑓 and 𝑔 are set to utilize the

maximum number of 𝑠𝑙𝑜𝑡𝑠 in a ciphertext.

Figure 3 shows an example of a training dataset

containing 3 samples with 6 features. The dataset is

partitioned into 4 sub-matrices and then encrypted by

ciphertexts containing 8 slots each. Note that the slots that

are not utilized (light blue squares) are set to zero.

Figure 3 – Partition of a matrix (left) followed by

encryption through multiple ciphertexts

4.3 Ciphertext multipl ication

Matrix multiplications are some of the most time-

consuming operations in the HE. To efficiently perform

matrix multiplications, we utilized the packing scheme

mentioned in the previous section.

To exemplify the underlying steps in matrix

multiplication, we utilize an example of how matrix -vector

multiplication is performed on Figure 4. The following

steps can be generalized to matrix multiplications [16]. We

pack and encrypt a matrix 𝑀 ∈ ℝ3×6 and a vector 𝑣 ∈ ℝ1×6.

Note that the number of features in M must match the

number of columns in 𝑣. The values in 𝑣 are replicated

(dark blue squares) to match the dimensions from 𝑀.

Once the data are packed, we compute element -wise

multiplication over the corresponding ciphertexts. The

results (yellow squares) are obtained by repeating the

rotation and addition operations log2(# 𝑠𝑙𝑜𝑡𝑠). Note that

the values marked with “*” (light grey squares) are

unknown/garbage values. The unknown values can be

cleaned by multiplication with zero vectors.

Figure 4 – Matrix vector multiplication

5. Experimental evaluation

We conducted experiments to evaluate NAG against GD

utilizing the MNIST [17] dataset. We compared NAG and

GD using two packing algorithms: the packing algorithm

from Nandakumar et al. and the packing algorithm from

Han et al. and Aharoni et al.

5.1 Dataset

The MNIST dataset for handwritten digit recognition

consists of 60,000 training samples and 10,000 testing

samples. Each image contains a handwritten number

between 0 and 9. The images of the MNIST dataset have a

gray-scale 28x28 pixel resolution, with one handwritten

digit located at the center of the image. Each image is

labeled with a class ranging from 0 to 9.

5.2 Network architecture

The neural network in our experiment followed the same

architecture used by Nandakumar et al.’s NN2 [7], which

consists of a 3 layer fully-connected network with 64

neurons on the input layer, 32 neurons on the first hidden

layer, 16 layers on the second hidden layer, and 10 neurons

on the output layer.

5.3 Evaluation method

We implemented the homomorphically encrypted deep

neural network over HE using HEAAN’s [18] CKKS

scheme.

When performing the experiments, two configurations

were prepared for the target neural network: baseline and

proposed. The baseline configuration utilizes the packing

and matrix multiplication algorithms used by Nandakumar

et al., and the proposed configuration uses the partitioned

packing and matrix multiplications algorithms described in

Section 4.2. The configurations’ CKKS parameters are

shown in Table 2. For both configurations , we set the

rescaling factor to 23, and the modulus size to 600. For the

baseline configuration, we set the number of ciphertext

slots to 64, and for the proposed configuration, we set the

number of slots to 2,048.

Similar to Nandakumar et al., each image from the

MNIST dataset was compressed by cropping the central

24x24 pixels and rescaling by a factor of 1 3⁄ using

bicubic interpolation , thus obtaining an 8x8 pixel image

representation.

We evaluated the execution time of the training

algorithm, the generation of weights , and the matrix

multiplication operation. Note that the execution time was

averaged by three continuous executions after the first

execution.

We used a server which had a Xeon Platinum 8280 (2.7

GHz) with 56 cores, and 1.5TB of main memory for

training over HE.

Table 2 – CKKS parameters for the experiment

Packing

algorithm

Rescaling

factor
Level

Modulus

size
slots

Baseline 23 34 600 64

Proposed 23 34 600 2,048

5.4 Evaluation results

Table 3 shows the training execution time results over

the MNIST dataset. The measurements were performed

using 56 threads with NTL for one training iteration. One

training iteration is enough to estimate the overall

execution time of the training algorithm.

When using NAG, 1 training iteration took 8.35 minutes,

5.52 times faster than the baseline method using NAG.

When using GD, 1 training iteration took 7.50 minutes,

4.54 times faster than the baseline method.

Table 4 shows the execution time encrypting the

generated weights. The proposed algorithm is has lower

execution time than the baseline algorithm because the

proposed method’s weight encryption algorithm is the same

as the encryption algorithm of the inputs. In contrast, the

baseline method had each element on a weight matrix

encrypted individually, and the input data is encrypted by

row. Moreover, the proposed packing algorithm has smaller

latency when performing matrix multiplications in

different layers.

Table 5 shows the latency of matrix multiplications with

one mini-batch. The proposed packing algorithm

performed 9.8 times faster matrix multiplications on

hidden layer 1 compared to the baseline. This is because

the proposed packing algorithm requires 1 multiplication

and at most log2(# 𝑠𝑙𝑜𝑡𝑠) rotations during matrix

multiplications. In contrast, the baseline packing algorithm

requires at most 𝑛2 multiplications when performiong

matrix multiplications. In comparison to ciphertext

rotations, homomorphic multiplications are

computationally more expensive rotations , thus, the lesser

multiplications, the lower the latency.

Table 3 – Execution time of 1 training iteration with 1

mini-batch (containing 64 samples)

Optimization

algorithm

Baseline Proposed

Training latency (min)

GD 34.07 7.50

NAG 46.15 8.35

Table 4 – Execution time of weight encryption

Packing

algorithm

Hidden

layer 1

(sec)

Hidden

layer 2

(sec)

Output

layer (sec)

Baseline 96.34 22.02 10.86

Proposed 23.30 4.72 4.68

Table 5 – Execution time of matrix multiplications

Packing

algorithm

Hidden

layer 1

(sec)

Hidden

layer 2

(sec)

Output

layer (sec)

Baseline 392.85 68.69 38.57

Proposed 40.05 26.72 20.29

6. Conclusion

This paper proposed a set of methods to decrease the

training latency of a homomorphically encrypted deep

neural network. Nesterov’s accelerated gradient (NAG)

descent was used instead of gradient descent (GD) to

decrease the number of iterations and to achieve maximum

accuracy in the training phase ; and the packing algorithms

from Han et al. and Aharoni et al . were adapted into our

solution.

The experimental evaluation was conducted on a

compressed MNIST dataset, confirming that the training

latency was lower than a neural network packing the data

by rows. Compared to the baseline packing algorithm, the

proposed packing algorithm can decrease the neural

network’s latency in weight generation and matrix

multiplication.

Future work includes 1) conducting the accuracy

comparison between GD and NAG after the homomorphic

training, and 2) evaluating the training latency of NAG

with the proposed packing solution on the MNIST dataset

without compression

References
[1] Gentry, C. (2009). Fully homomorphic
encryption using ideal lattices. Proceedings of the
41st annual ACM symposium on Theory of computing,
pp. 169–178.

[2] Cheon, J. H., Han, K., Kim, A., Kim, M., and
Song, Y. (2018). Bootstrapping for approximate
homomorphic encryption. Proceedings of the Annual
International Conference on the Theory and
Applications of Cryptographic Techniques , pp. 360 –
384. Springer, Cham.

[3] Gilad-Bachrach, R., Dowlin, N., Laine, K.,
Lauter, K., Naehrig, M., and Wernsing, J. (2016).
Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. International
Conference on Machine Learning, pp. 201–210.

[4] Al Badawi, A., Jin , C., Lin, J., Mun, C. F., Jie, S.
J., Tan, B. H. M., Nan, X., Khin A. M. M.,and
Chandrasekhar, V. R. (2020). Towards the alexnet
moment for homomorphic encryption: Hcnn, the first
homomorphic cnn on encrypted data with gpus. IEEE
Transactions on Emerging Topics in Computing, 9(3),
pp. 1330–1343.

[5] Boemer, F., Lao, Y., Cammarota, R., and
Wierzynski, C. (2019). nGraph-HE: a graph compiler
for deep learning on homomorphically encrypted data.
Proceedings of the 16th ACM International
Conference on Computing Frontiers, pp. 3–13.

[6] Dathathri, R., Saarikivi, O., Chen, H., Laine, K.,
Lauter, K., Maleki, S., Musuvathi, M., and Mytkowicz,
T. (2019). CHET: an optimizing compiler for fully -
homomorphic neural -network inferencing.
Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, pp. 142–156.

[7] Nandakumar, K., Ratha, N., Pankanti, S., and
Halevi, S. (2019), Towards Deep Neural Network
Training on Encrypted Data. IEEE/CVF Conference
on Computer Vision and Pattern Recognition
Workshops, 2019, pp. 40–48

[8] Lou, Q., Feng, B., Charles Fox, G., and Jiang, L.
(2020). Glyph: Fast and accurately training deep
neural networks on encrypted data. Advances in
Neural Information Processing Systems, 33, pp.
9193–9202.

[9] Boura, C., Gama, N., Georgieva, M., and Jetchev,
D. (2020). Chimera: Combining ring-lwe-based fully
homomorphic encryption schemes. Journal of
Mathematical Cryptology, vol. 14, no. 1, pp.316-338.

[10] Kim, A., Song, Y., Kim, M., Lee, K., and Cheon,
J. H. (2018). Logistic regression model tra ining based
on the approximate homomorphic encryption. BMC
medical genomics, 11(4), pp. 23–31.

[11] Nesterov, Y. E. (1983). A method for solving the
convex programming problem with convergence rate
O(1/k^2). Doklady Akademii Nauk SSSR , 269(3), pp.
543–547.

[12] Sutskever, I., Martens, J., Dahl, G., and Hinton,

G. (2013). On the importance of initialization and
momentum in deep learning. International conference
on machine learning, pp. 1139–1147. PMLR.

[13] Brakerski, Z., Gentry, C., and Vaikuntanathan, V.
(2014). (Leveled) fully homomorphic encryption
without bootstrapping. ACM TOCT, vol. 6, no. 3, pp.
1–36.

[14] Baruch, M., Drucker, N., Greenberg, L., and
Moshkowich, G. (2022). A Methodology for Training
Homomorphic Encryption Friendly Neural Networks.
Applied Cryptography and Network Security
Workshops. Lecture Notes in Computer Science, vol
13285. Springer, Cham.

[15] Han, K., Hong, S., Cheon, J. H., and Park, D.
(2018). Efficient logistic regression on large
encrypted data. Cryptology ePrint Archive.

[16] Aharoni, E., Adir, A., Baruch, M., Drucker, N.,
Ezov, G., Farkash, A., Greenbder, L., Masalha, R.,
Moshkowich, G., Murik, D., Shaul, H., Soceanu, and
Soceanu, O. (2020). HeLayers: A Tile Tensors
Framework for Large Neural Networks on Encrypted
Data. arXiv e-prints, arXiv-2011.

[17] LeCun, Y., Burges, C. J., and Cortes, C. (1998).
The mnist database. MNIST handwritten digit
database. Retrieved February 14, 2023, from
http://yann.lecun.com/exdb/mnist/

[18] Snucrypto. (n.d.). SNUCRYPTO/Heaan . GitHub.
Retrieved February 15, 2023, from
https://github.com/snucrypto/HEAAN

	Latency Improvement of
	Homomorphic Encrypted Deep Neural Network Training
	Tiago Monteiro† Takuya Suzuki‡ and Hayato Yamana§
	†‡Graduate School of Fundamental Science and Engineering 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan § Faculty of Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan
	E-mail: †§ {tiago, t-suzuki, yamana} @yama.info.waseda.ac.jp
	1. Introduction
	2. Preliminaries
	2.1 Fully homomorphic encryption (FHE)
	2.2 Deep learning model
	2.3 Nesterov’s Accelerated Gradient (NAG)
	2.4 Least squares approximation of the sigmoid function

	3. Related Work
	4. Proposed method
	4.1 Evaluation of NAG
	4.2 Ciphertext packing
	4.3 Ciphertext multiplication

	5. Experimental evaluation
	5.1 Dataset
	5.2 Network architecture
	5.3 Evaluation method
	5.4 Evaluation results

	6. Conclusion

