
DEIM Forum 2023 5b-9-2

Performance Comparison of Homomorphic Encrypted Convolutional Neural
Network Inference between Microsoft SEAL and OpenFHE

Haoyun ZHU†, Takuya SUZUKI††, Houtao HUANG††, and Hayato YAMANA†††

† School of Fundamental Science and Engineering, Waseda University,
3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan

†† Graduate School of Fundamental Science and Engineering, Waseda University,
3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan

††† Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan
E-mail: †shuhaoyun@akane.waseda.jp, ††{t-suzuki,tao991,yamana}@yama.info.waseda.ac.jp

Abstract Homomorphic encryption (HE) is a promising way to preserve data privacy even during their calculation because

HE enables evaluation over ciphertexts. After the first proposal of fully homomorphic encryption (FHE) enabling arbitrary

numbers of evaluation over ciphertexts by Craig Gentry in 2009, many HE libraries have appeared that we can use free of

charge. Meanwhile, it is not easy to choose the best-fit library for beginners of HE. This paper shows an insight for selecting

the library targeting Microsoft SEAL and OpenFHE, two popular HE libraries. We implemented a convolutional neural net-

work (CNN) inference application with these two libraries to compare the inference latency and accuracy. Note that machine

learning methods over HE are one of the killer applications of HE. Our experimental results showed that the CNN w/ SEAL

had smaller latency, less than 50%, compared to the CNN w/OpenFHE, while the accuracy was comparable between w/ SEAL

and w/OpenFHE, but slightly better w/ SEAL. In terms of ease of use, OpenFHE is superior because programmers do not have

to consider the rescaling required during the calculation. In contrast, adopting automatic rescaling incurs 5x more latency.
Key words Privacy-preserving machine learning, Homomorphic encryption, Microsoft SEAL, OpenFHE

1 Introduction

In 2009, Craig Gentry [1] first proposed fully homomorphic en-

cryption (FHE), enabling arbitrary numbers of evaluations (ad-

ditions and multiplications) over ciphertexts. After his pro-

posal, the number of papers related to homomorphic encryp-

tion (HE) is increasing every year, benefitting from many kinds

of HE libraries, including HElib（注1）, TFHE（注2）, PALISADE（注3）,

HEAAN（注4）, SEAL（注5）, and OpenFHE（注6）.

Meanwhile, choosing the best-fit HE library for beginners is

difficult; thus, this paper tackles to provide insight into se-

lecting the library targeting Microsoft SEAL [2] and OpenFHE

[3], which are two popular FHE libraries. Microsoft SEAL is

one of the most widely used HE libraries adopting various HE

schemes such as the Brakerski-Fan-Vercauteren (BFV) scheme

[4], the BrakerskiGentry-Vaikuntanathan (BGV) scheme [5], and

the Cheon-KimKim-Song (CKKS) scheme [6], [7], [8]. Another

（注1）：https://github.com/homenc/HElib

（注2）：https://github.com/tfhe/tfhe

（注3）：https://palisade-crypto.org/

（注4）：https://github.com/snucrypto/HEAAN

（注5）：https://github.com/microsoft/SEAL

（注6）：https://github.com/openfheorg/openfhe-development

programmer-friendly new HE library is OpenFHE, a new open-

source HE library released in July 2022. OpenFHE combines previ-

ously proposed various HE-related schemes, which have been col-

laboratively constructed by over 26 HE-related research organiza-

tions, with merging PALISADE, HElib, and HEAAN. Note that

OpenFHE focuses more on the usability of the scheme to promote a

wide range of HE usage because the theory of HE and its program-

ming with HE is different from usual programming, which limits

the wide range of usages.

This paper compares two important aspects, i.e., latency and ac-

curacy, when comparing the two HE libraries. In the comparison,

we implement a convolutional neural network (CNN) inference ap-

plication to compare the libraries because machine learning is one

of the killer HE applications of HE. For example, machine learn-

ing as a service (MLaaS) has been gaining more and more attention

from businesses as a series of services that provide machine learn-

ing tools as a part of cloud computing services. However, MLaaS

can be accompanied by significant risks when using users’ private

data. To preserve the privacy of users’ private data, MLaaS with

homomorphic encryption (HE) is one of the most reliable solutions.

With HE, a user can send the user’s ciphertexts to a third party and

allows the third party to run a machine learning model, such as a

neural network, with the user’s ciphertexts without revealing any

underlying private information.

In this paper, we give an insight into selecting a HE library for

readers when they want to adopt HE by comparing the latency and

the accuracy of CNN inference with SEAL and OpenFHE.

This paper is organized as follows. In Section 2, we explain the

background of HE and HE libraries. Section 3 summarizes related

work comparing HE libraries and homomorphic encrypted CNN in-

ference. Section 4 shows our performance comparison method. In

Section 5, we report and discuss the results of the experiments. Fi-

nally, we conclude this paper in Section 6.

2 Background

2. 1 Overview of Homomorphic Encryption (HE)
HE enables performing computations over ciphertexts without us-

ing a secret key. HE is classified into the following four types.

• Partially HE (PHE): PHE can be further classified into two

types: additive HE which supporting only homomorphic addition;

and multiplicative HE supporting only homomorphic multiplica-

tions.

• Somewhat HE (SHE): SHE supports several times of homo-

morphic additions and a few times homomorphic multiplications on

a ciphertext; thus, SHE cannot evaluate homomorphic operations

with high multiplicative depth.

• Leveled HE (LHE): LHE supports several homomorphic ad-

ditions and the pre-defined times of homomorphic multiplications,

called level as an HE parameter. LHE can evaluate homomorphic

operations with higher multiplicative depth than SHE; however,

LHE still cannot evaluate homomorphic operations with undefined

multiplicative depth, such as training in machine learning. In addi-

tion, the higher the level is, the higher the computational cost and

the larger the ciphertext size are; therefore, the level should be as

small as possible.

• Fully HE (FHE): FHE can perform an arbitrary number of

both homomorphic additions and homomorphic multiplications on a

ciphertext by applying bootstrap, which takes a long execution time.

FHE is constructed by adopting bootstrapping to SHE or LHE; i.e.,

if bootstrapping is not implemented or executed, the scheme can be

called SHE or LHE.

One of the suitable HE schemes for homomorphic encrypted ma-

chine learning is the homomorphic encryption for the arithmetic

of approximate numbers (HEAAN) scheme, which is also known

as the Cheon-Kim-Kim-Song (CKKS) scheme. The first CKKS

scheme was proposed by Cheon et al. in 2017 [6] as LHE. Be-

cause the CKKS scheme approximates floating-point numbers to

fixed-point numbers and adds noise into ciphertexts, the decryption

result of a ciphertext is different from the original plaintext. How-

ever, the error is sufficiently small by selecting HE parameters care-

fully; i.e., the error can be negligible. Furthermore, Cheon et al. [8]

proposed the residue number system (RNS) variant of the CKKS

scheme (called FullRNS-CKKS scheme), which is more efficient

than the original CKKS scheme. Although the CKKS scheme is

an LHE-based-FHE scheme [7], we focus on the FullRNS-CKKS

scheme without adopting bootstrapping because the multiplicative

depth in homomorphic encrypted CNN inference is pre-defined.

2. 2 The FullRNS-CKKS Scheme
We explain the definition of words, HE parameters, and opera-

tions of the FullRNS-CKKS scheme. Here, we define pt as a plain-

text, ct as a ciphertext, and t as either a plaintext or ciphertext.

• Message: A message is represented as a vector of complex

numbers. The FullRNS-CKKS scheme supports packing [9] which

encodes or encrypts a vector into a plaintext or ciphertext. Each el-

ement in the vector is called slot, and the number of slots is called

slot counts.

• Plaintext: Data encoded from a message.

• Ciphertext: Data encrypted from a plaintext.

• Scale scale(t): The bit length of the fraction part. The initial

scale of a plaintext and ciphertext is called the scale factor ∆.

• Level level(t): The remaining number of applicable homo-

morphic multiplication. If the level of a ciphertext is zero, no other

homomorphic multiplication can be applied to the ciphertext.

• Degree of polynomial rings N: The fixed parameter in a ho-

momorphic encrypted operation. A plaintext or ciphertext t consists

of one or more polynomial rings with modulus Qlevel(t). In the RNS

representation, a polynomial ring is divided into several polynomial

rings with {qi}, where i ∈ [0, level(t)] and q j ≈ ∆ for j ∈ [1, level(t)]

are satisfied in Microsoft SEAL and OpenFHE.

• Size size(t): The number of polynomial rings in a plaintext

or ciphertext without the RNS representation. size(pt) = 1 and

size(ct) >= 2 are satisfied.

• Data structure of a plaintext and ciphertext: A 3D array of

size(t) × level(t) × N. Here, we define t[i][j][k] as an element in t,

where 0 <= i < size(t), 0 <= j <= level(t), and 0 <= k < N are satisfied.

• Number theoretic transform (NTT) form: In some homo-

morphic operations such as homomorphic multiplication, a nega-

cyclic convolution of two polynomial rings is performed. Because

the computational cost of the convolution is high, NTT is applied to

a plaintext or ciphertext in normal form to convert it to NTT form

and reduce the computational cost of the multiplication from O(N2)

to O(N log N). Note that a plaintext or ciphertext in NTT form can

be converted to that in normal form by applying inverse NTT.

• Homomorphic addition HomAdd(ct, t): We define ctadd,

which is a 3D array of max (size(ct), size(t))×min (level(ct), level(t))×
N, as a result ciphertext of HomAdd(ct, t) and assume size(ct) >=
size(t). HomAdd(ct, t) performs ctadd[i][j][k] ← ct[i][j][k] +

t[i][j][k], and HomAdd(ct, t) also performs ctadd[i′][j][k] ←
ct[i′][j][k] if and only if size(ct) > size(t) is satisfied, where i ∈
[0, size(t)), i′ ∈ [size(t), size(ct)), j ∈ [0,min(level(ct), level(t))], and

k ∈ [0,N) are satisfied. Note that scale(ct) and scale(t) should be

the same. In addition, in Microsoft SEAL, the inputs’ levels must

be the same.

• Homomorphic multiplication HomMul(ct, t): We define

ctadd, which is a 3D array of (size(ct) + size(t) − 1) ×
min (level(ct), level(t)) × N, as a result ciphertext of HomMul(ct, t).

Here, we assume that the inputs’ are in NTT form and the inputs’

sizes are at most two to reduce the computational cost. Then,

when t is a ciphertext, HomMul(ct, t) performs ctmul[0][j][k] ←
ct[0][j][k] × t[0][j][k], ctmul[1][j][k] ← ct[0][j][k] × t[1][j][k] +

ct[1][j][k]× t[0][j][k], and ctmul[2][j][k]← ct[1][j][k]× t[1][j][k],

where j ∈ [0,min(level(ct), level(t))] and k ∈ [0,N) are satis-

fied. In addition, when t is a plaintext, HomMul(ct, t) performs

ctmul[i][j][k] ← ct[i][j][k] × t[0][j][k], where i ∈ [0, size(ct)),

j ∈ [0,min(level(ct), level(t))], and k ∈ [0,N). scale(ctmul) is

scale(ct) × scale(t), and level(ctmul) is min (level(ct), level(t)). Note

that in Microsoft SEAL, the inputs’ levels must be the same.

• Relinearization Relin(ct): The larger the ciphertext’s size

is, the higher the required computational and spatial costs are.

The solution is relinearization which reduces the input’s size.

size(Relin(ct)) is size(ct) − 1 if size(ct) > 2 is satisfied.

• Rescaling Rescl(ct): Rescaling reduces the input’s scale to

keep the bit length for decimal part sufficient. The level of the

rescaling output is level(ct) − 1.

• Rotation Rotate(ct, s): Rotation permutes the slots of the in-

put circularly with step s.

2. 3 Microsoft SEAL
Microsoft SEAL [2], which is released by Microsoft Research, is

an open-source LHE library built in C++ or C#. Microsoft also re-

leased EVA [10] which enables building an application with Python.

Microsoft SEAL is one of the easiest HE libraries to understand

and to use, i.e., user-friendly, because the API is simple. In addi-

tion, Microsoft SEAL implements a memory allocator to reduce the

overhead of memory allocation and deallocation.

Meanwhile, Microsoft SEAL requires users to understand HE’
s a basic concept to improve its performance because users must

add relinearization and rescaling operations manually. Although

EVA adds relinearization and rescaling operations to suitable places,

EVA incurs overhead because EVA encodes messages at runtime,

even though the encoding can be done in advance. Note that Mi-

crosoft SEAL supports not only the FullRNS-CKKS scheme but

also the BFV scheme and BGV schemes for modular operations on

encrypted integers.

2. 4 OpenFHE
OpenFHE [11], released in July 2022, is a new open-source

FHE library. OpenFHE combines the design ideas of previous

FHE projects, such as PALISADE, HElib, and HEAAN, and adds

new concepts and ideas. OpenFHE plans to support bootstrapping

for all the implemented FHE schemes besides scheme-switching.

OpenFHE uses a standard hardware abstraction layer (HAL) to sup-

port multiple hardware-accelerated backends. OpenFHE includes

both a user-friendly mode and a compiler-friendly mode. With

user-friendly mode, all the maintenance operations, such as mod-

ulus switching, relinearization, and bootstrapping are automatically

invoked. With the compiler-friendly mode, an external compiler

makes the above decisions.

OpenFHE combines previously proposed various HE-related

schemes, which have been collaboratively constructed by over 26

HE-related research organizations. OpenFHE supports multiple

FHE schemes provided by PALISADE, advanced capabilities of the

BGV scheme provided by HElib, and the FullRNS-CKKS scheme

provided by HEAAN.

2. 5 Comparison between Microsoft SEAL and OpenFHE in
the FullRNS-CKKS Scheme

2. 5. 1 Memory Allocation

Because the memory allocation and deallocation are executed

as kernel functions, their overhead is high. One of the solu-

tions to reduce the overhead is pseudo-allocation and pseudo-

deallocation. Microsoft SEAL implements the memory alloca-

tor with such pseudo-allocation and pseudo-deallocation; however,

OpenFHE does not implement such a memory allocator. Therefore,

Microsoft SEAL has less overhead in memory management than

OpenFHE.

2. 5. 2 Adjustment of Scale

When rescaling in the RNS representation, the ciphertext’s

scale is divided by the last moduli of the ciphertext. In addi-

tion, the scale of the ciphertext can be different from the scale fac-

tor in the FullRNS-CKKS scheme because all the moduli are co-

prime and different from the scale factor, even though some mod-

uli are almost the same as the scale factor. Therefore, the scales

of inputs of homomorphic addition can be different; however, the

scales should be the same, i.e., the scales should be adjusted. Mi-

crosoft SEAL does not adjust the scales, i.e., we have to adjust the

scales manually; however, OpenFHE adjusts the scales automati-

cally with FLEXIBLEAUTO, which is one of the rescaling strategies

in OpenFHE. Note that we can adjust the scales by ourselves with

FIXEDMANUAL in OpenFHE.

3 Related Work

We explain the research related to the comparison of HE libraries

in Section 3. 1. Then, Section 3. 2 explains homomorphic encrypted

CNN with the FullRNS-CKKS scheme.

3. 1 Comparison of Homomorphic Encryption Libraries
In 2022, Doan et al. [12] surveyed the implementation of HE

schemes. Doan et al. compared the performance of several no-

table HE schemes covering PHE, SHE, and FHE. Doan et al. com-

pared Microsoft SEAL and PALISADE with homomorphic addi-

tion and homomorphic multiplication, followed by demonstrating

that Microsoft SEAL was faster than PALISADE. However, the re-

sults shown in [12] have two problems: 1) Doan et al. used differ-

ent parameters between the HE libraries in the comparison, and 2)

Doan et al. did not demonstrate the performance of the homomor-

phic encrypted CNN inference. The latency of an actual application

would be different from the latency calculated by the measurement

of primitive homomorphic operations; therefore, it is significant to

compare the latency of an actual homomorphic encrypted CNN in-

ference among HE libraries.

3. 2 Homomorphic Encrypted Convolutional Neural Net-
work Inference with the CKKS Scheme

In 2019, Boemer et al. [13] proposed nGraph-HE, which is an

extension of Intel’s DL graph compiler nGraph. nGraph-HE en-

ables models to be deployed with minimal code changes. In the

same year, Boemer et al. [14] proposed nGraph-HE2, the first eval-

uation of a model with an encrypted ImageNet dataset, which

improves nGraph-HE. nGraph-HE2 enables privacy-preserving in-

ference with batch-axis packing and several optimizations, in-

cluding lazy rescaling to shorten the latency, to implement the

FullRNS-CKKS scheme with Microsoft SEAL. As a result, nGraph-

HE2 achieved a 3–88x speedup in scalar encoding, a 2.6–4.2x

speedup in ciphertext-plaintext scalar addition, and a 2.6x speedup

in ciphertext-plaintext scalar multiplication. Furthermore, nGraph-

HE2 shortens the latency by 8x on the CryptoNets network by lazy

rescaling.

In 2019, Dathathri et al. [15] proposed CHET which is an op-

timizing compiler for homomorphic encrypted neural network in-

ference. To shorten the inference latency, CHET chooses HW

(height-width) layout (channel-wise packing) or CHW (channel-

height-width) layout for packing an image to one or more cipher-

texts. As a result, CHET achieved higher performance than the ex-

pert hand-tuned. In 2020, Dathathri et al. [10] proposed EVA which

is an optimizing compiler and runtime for homomorphic encrypted

applications. EVA estimates the timing of relinearization and rescal-

ing to shorten the latency; therefore, EVA is user-friendly. EVA

achieved a 5.3x speedup compared to CHET.

In 2020, Ishiyama et al. [16] proposed a method to improve

the accuracy of CNN inference with HE, which adopted batch-

axis packing and different activation functions. Ishiyama et al.

achieved accuracies of 99.29% and 81.06% for MNIST and CIFAR-

10 datasets,respectively. Furthermore, in 2022, Ishiyama et al.

[17], [18] proposed a tuning method of homomorphic encrypted

CNN inference, i.e., tuning both latency and accuracy, by chang-

ing the channel pruning ratio and activation functions. As a result,

Ishiyama et al. successfully tuned the latency from 8.1–12.9 s de-

pending on the accuracy of 66.52–80.96% on the CIFAR-10 dataset.

Ishiyama et al. implemented these methods with Microsoft SEAL.

4 Comparison Method of Homomorphic En-
cryption Libraries

4. 1 Overview
The homomorphic encrypted CNN inference has been acceler-

ated with several optimizations; however, the latency also depends

on the implementation. Our goal is to choose the best-fit library for

beginners of HE. To achieve our goal, we show an insight for select-

Table 1 CNN model for the MNIST dataset based on [17].

Layer type Description Layer Size

Convolution Five filters of size 5 × 5 and stride

(2, 2) w/o padding

12 × 12 × 5

Batch normalization Applying batch normalization 12 × 12 × 5

Activation Applying activation function 12 × 12 × 5

Convolution 50 filters of size 5 × 5 and stride

(2, 2) w/o padding

4 × 4 × 50

Batch normalization Applying batch normalization 4 × 4 × 50

Activation Applying activation function 4 × 4 × 50

Fully connected Weighted sum of the entire previous

layers w/ 10 filters, each output cor-

responding to one of the 10 classes

1 × 1 × 10

ing the library targeting Microsoft SEAL and OpenFHE, two pop-

ular HE libraries. We implemented a convolutional neural network

(CNN) inference application with these two libraries to compare the

inference latency and accuracy.

4. 2 Datasets
In the experimental evaluation, we use the MNIST dataset [19]

and the CIFAR-10 dataset [20], where the MNIST dataset and the

CIFAR-10 dataset are common datasets to evaluate CNN with HE.

The MNIST dataset consists of images of grayscale 28 × 28 pixels,

each of which is a single handwritten digit of 0–9, with the ground-

truth label. The MNIST dataset consists of 60,000 training data and

10,000 test data. The CIFAR-10 dataset consists of 32 × 32 pix-

els RGB images, each of which is one of 10 different classes, with

the ground-truth label. The CIFAR-10 dataset consists of 50,000

training data and 10,000 test data.

4. 3 Description of the CNN Model
The configuration of the CNN models for the MNIST dataset and

CIFAR-10 dataset are the same as those used in [17], [18]. Table 1

and Table 2 list the configuration of the CNN models for the MNIST

dataset and CIFAR-10 dataset, respectively.

4. 4 Activation Function
Table 3 lists the details of the activation functions and non-HE in-

ference accuracy reported in [17] [18]. Here, in the names of the

polynomial approximated activation functions, rg means a range

of approximation, and deg means the approximation degree. The

range affects only the accuracy; however, the approximation degree

affects not only the accuracy but also the latency. Therefore, we

select square, swish-rg5-deg2, and swish-rg7-deg4 as the activation

functions in our experimental evaluation because we use the same

trained CNN models used in [17], [18]. Note that we do not adopt

channel pruning technique proposed in [17], [18].

4. 5 Experiment Environment and Condition
We use the source code provided by Ishiyama et al. [18]（注7） to

execute the homomorphic encrypted CNN inference. Although

we adopt Microsoft SEAL 4.0.0 instead of Microsoft SEAL 3.6.6

（注7）：https://github.com/yamanalab/latency-aware-cnn-inference

Table 2 CNN network model for CIFAR-10 (quoted from [17], [18])

Layer type Description Layer Size

Convolution
32 filters of size 3 × 3 × 3

and stride (1, 1) with padding.
32 × 32 × 32

Batch normalization Applying batch normalization 16 × 16 × 32

Activation Applying activation function 32 × 32 × 32

Average pooling w/ extent 2 and stride 2 16 × 16 × 64

Convolution
64 filters of size 3 × 3 × 32

and stride (1, 1) with padding
16 × 16 × 64

Batch normalization Applying batch normalization 16 × 16 × 64

Activation Applying activation function 16 × 16 × 64

Average pooling w/ extent 2 and stride 2 8 × 8 × 64

Convolution
128 filters of size 3 × 3 × 64

and stride (1, 1) with padding
8 × 8 × 128

Batch normalization Applying batch normalization 8 × 8 × 128

Activation Applying activation function 8 × 8 × 128

Average pooling w/ extent 2 and stride 2 4 × 4 × 128

Global average pooing Applying global average pooling 1 × 1 × 256

Fully connected
Weighted sum of the entire

previous layer with 10 filters
1 × 1 × 10

which Ishiyama et al. used, we do not change any codes for the

version up. However, we modified the source code for OpenFHE,

i.e use the operation methods in OpenFHE instead of SEAL. We set

CMAKE BUILD TYPE to Releasemode in CMake to build Microsoft

SEAL, OpenFHE, and our source code.

Based on the methods of Ishiyama et al. [17], [18], we adopt the

optimization to merge coefficients of a pair of layers to reduce the

level consumption. We merge a pair of the convolutional layer and

the batch normalization layer and a pair of the activation function

layer and the average pooling layer. Furthermore, if the absolute

value of a coefficient w of a layer is less than the threshold ε, the

coefficient is rounded; i.e., we set w to ε when 0.0 <= w < ε or set w

to −ε when −ε < w < 0.0, where the threshold ε is set to 10−6 for

swish-rg7-deg4 and is set to 10−7 for square and swish-rg5-deg2.

Table 4 lists the specification of the server used in the evaluation.

In addition, we configure the HE parameters as shown in Table 5.

In OpenFHE, we adopt FLEXIBLEAUTO for the rescaling strategy.

4. 6 Experiment Setup
We adopt parallelization among homomorphic operations using

OpenMP with static scheduling to shorten the latency, where the

static scheduling decides the chunk size before executing the for-

loops so that the overhead by chunking is smaller than the other

scheduling mode. The number of threads we used is 1, 18, 36, or

72. To evaluate scalability, we use only NUMA-node0 for 1 or 18

threads, use only NUMA-node0 and NUMA-node1 for 36 threads

and use all for 72 threads by specifying the NUMA nodes using

the numactl command. Although OpenFHE supports paralleliza-

tion in a homomorphic operation, i.e., fine-grained parallelization,

we adopt parallelization only among homomorphic operations, i.e.,

coarse-grained parallelization, because coarse-grained paralleliza-

1 18 36 72
0

5

10

15

20

25

30

35

L
at
en
cy
[s
ec
]

#Threads

SEAL square
SEAL swish rg5 deg2
SEAL swish rg7 deg4
OpenFHE square
OpenFHE swish rg5 deg2
OpenFHE swish rg7 deg4

Figure 1 Latency v.s. the number of threads with the MNIST dataset.

1 18 36 72
0

100

200

300

400

500

600

L
at
en
cy
[s
ec
]

#Threads

SEAL square
SEAL swish rg5 deg2
SEAL swish rg7 deg4
OpenFHE square
OpenFHE swish rg5 deg2
OpenFHE swish rg7 deg4

Figure 2 Latency v.s. the number of threads with the CIFAR-10 dataset.

tion incurs lower overhead than fine-grained parallelization.

To obtain the average latency, we execute 72 times inference, fol-

lowed by averaging them for each parameter set and dataset. In

addition, to obtain the average accuracy, we execute 1,000 times in-

ference using 72 threads with SEAL and 18 threads with OpenFHE,

followed by averaging.

5 Result and Discussion

Table 6 shows the latency and accuracy of the MNIST and

CIFAR-10 datasets. Besides, Fig. 1 and 2 illustrate the latency

versus the number of threads.

Table 7 compares the latency of primitive operations in Mi-

crosoft SEAL and OpenFHE under the same conditions. Table 8

and 9 compare the latencies of multiplication and activation func-

tions with FIXEDMANUAL and FLEXI- BLEAUTO mode with

OpenFHE, respectively.

5. 1 Latency Comparison
Table 6 shows that OpenFHE was almost twice slower as Mi-

crosoft SEAL with one thread, three times slower with 18 threads,

four times slower with 36 threads, and 8 times slower with 72

Table 3 Details of activation functions and inference accuracy over plaintext with MNIST dataset and

CIFAR-10 dataset reported in Table 5.3, Table 5.5, and Table 5.6 in [17]

Activation Range for Appoximation
Function

Accuracy[%]

function name x-axis degree MNIST CIFAR-10

square N/A N/A x2 99.35 79.17

swish-rg5-deg2 [−5, 5] 2 0.1 x2 + 0.5x + 0.24 99.48 79.53

swish-rg7-deg4 [−7, 7] 4 −0.001328x4 + 0.128x2 + 0.5x + 0.1773 99.52 80.91

Table 4 The server specification and software versions for the experiment.

CPU

Model number Intel Xeon E7-8880 v3

Frequency (base) 2.30 GHz

Frequency (turbo) 3.10 GHz

#cores/CPU 18

Hyper-threading Disabled

L1i cache capacity/core 32 KiB

L1d cache capacity/core 32 KiB

L2 cache capacity/core 256 KiB

L3 cache capacity/CPU 45 MiB

#CPUs 4

Memory Capacity 3 TB

#NUMA nodes 4

OS CentOS 7.6.1810

Library
Microsoft SEAL 4.0.0

OpenFHE 1.0.0

Compiler & API

g++ 7.4.0

OpenMP 4.5

Eigen 3.4.0

Table 5 HE Parameters

Dataset Function Level

Degree of

polynomial

rings N

Slot

counts

Scale

factor

∆

MNIST

square 5

16,384 8,192 230

swish-rg5-deg2 5

swish-rg7-deg4 7

CIFAR-10

square 8

swish-rg5-deg2 11

swish-rg7-deg4 11

threads. We estimate the following two reasons.

The first reason is the different latencies in primitive operations

between Microsoft SEAL and OpenFHE. Table 7 shows the latency

of each primitive operation in the FullRNS-CKKS scheme with Mi-

crosoft SEAL and OpenFHE, where we tested 5 times executions

using sample codes to calculate the average latency under the same

conditions and parameters. As shown in Table 7, the operation in

SEAL is faster than in OpenFHE. Note that, unlike OpendFHE, Mi-

crosoft SEAL does not support direct computation with integers, to

compute, you need to change an integer into plaintext.

The second reason is that OpenFHE needs more kernel function

calls to allocate and deallocate memory than SEAL, which may re-

sult in a bottleneck of OpenFHE. To confirm the memory consump-

tion in the inference process for MNIST and CIFAR-10 datasets,

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%
m
em
or
y

Time[sec]

OpenFHE_square OpenFHE_swish_reg5_deg2

OpenFHE_swish_reg7_deg4 SEAL_square

SEAL_swish_reg5_deg2 SEAL_swish_reg7_deg4

Figure 3 Memory allocation transition w/ SEAL and OpenFHE (MNIST

dataset)

4
5
6
7
8
9
10
11

6 13 20 27 34 41 48 55 62 69 76 83 90 97 10
4

11
1

11
8

12
5

13
2

13
9

14
6

15
3

16
0

16
7

17
4

18
1

18
8

19
5

20
2

20
9

21
6

22
3

23
0

23
7

%
m
em
or
y

Time[sec]

OpenFHE_square OpenFHE_swish_reg5_deg2

OpenFHE_swish_reg7_deg4 SEAL_square

SEAL_swish_reg5_deg2 SEAL_swish_reg7_deg4

Figure 4 Memory allocation transition w/ SEAL and OpenFHE (CIFAR-

10 dataset)

we measured the transition of the physical memory consumption.

We recorded the memory consumption during the first 15 seconds

and 4 minutes after initiating the second inference of MNIST and

CIFAR-10 datasets, respectively. Note that we measured the second

inference’s memory consumption to eliminate uncertain behaviors

usually occurring at the first inference because of the cache mech-

anism. Figs. 3 and 4 show the transitions of memory consumption

with different activation functions in 72 threads. As shown in Figs. 3

and 4 , Microsoft SEAL keeps memory consumption at the same

level, while OpenFHE changes the memory consumption dynami-

cally. From these results, it is clear that since Microsoft SEAL has

built-in memory management, Microsoft SEAL does not release the

allocated memory to reuse, which results in less overhead compared

to OpenFHE.

5. 1. 1 Latency v.s. the Number of Threads

As shown in Fig. 1 and 2, using 72 threads achieved the lowest

latency in Microsoft SEAL; however, using 18 threads achieved the

lowest latency in the MNIST dataset using OpenFHE, 18 threads

and 36 threads in OpenFHE achieved the lowest latency with the

square function and the swish function, respectively in the CIFAR-

Table 6 The result w/MNIST dataset and CIFAR-10 dataset (FIXEDMANUAL mode in OpenFHE)

Activation

function
#threads

MNIST dataset CIFAR-10 dataset

Latency [sec] Accuracy [%] Latency [sec] Accuracy [%]

SEAL OpenFHE SEAL OpenFHE SEAL OpenFHE SEAL OpenFHE

square

1 11.15 23.07

99.2 99.2

201.1 374.76

80.3 78.8
18 1.20 4.28 20.1 68.01

36 1.24 6.55 23.6 85.94

72 0.64 9.38 9.6 125.19

swish-rg5-deg2

1 11.08 22.91

99.3 99.3

200.2 374.37

80.3 80.1
18 1.20 4.10 20.2 65.52

36 1.24 6.63 23.6 88.77

72 0.65 8.81 9.6 145.83

swish-rg7-deg4

1 15.01 29.40

99.4 99.4

249.5 477.46

81.4 81.5
18 1.64 5.40 28.1 82.66

36 1.74 8.17 32.3 101.20

72 0.74 13.77 13.3 181.65

Table 7 Latency of primitive operations

Dataset Level Operation
Latency[ms]

SEAL OpenFHE

MNIST

5

Addition 0.465 4.059

Multiplication 6.181 15.298

Rotation 31.450 455.506

Rescaling 6.763 28.802

Relinearization 0.030 0.023

7

Addition 0.379 1.922

Multiplication 5.344 6.644

Rotation 36.095 102.314

Rescaling 5.794 96.606

Relinearization 0.004 0.076

Cifar-10

8

Addition 0.639 4.251

Multiplication 6.969 7.329

Rotation 53.200 128.671

Rescaling 8.612 26.781

Relinearization 0.015 0.031

11

Addition 2.556 2.417

Multiplication 16.192 7.798

Rotation 127.979 160.022

Rescaling 17.557 50.683

Relinearization 0.047 0.080

10 dataset. As we mentioned in our experimental setup (Section

4.6), we used fewer NUMA nodes on the larger number of threads.

The reason why using more threads results in longer latency with

OpenFHE is that the latency reduced by the increment of threads

does not offset the latency increased by the memory allocation and

deallocation due to the lack of memory management capability of

OpenFHE.

5. 1. 2 Mode comparison in OpenFHE

Table 9 shows the difference in the latency between FIXEDMANUAL

and FLEXIBLEAUTO in OpenFHE, where FLEXIBLEAUTO is eas-

ier to use than FIXEDMANUAL because rescaling is performed au-

tomatically by OpenFHE with FLEXIBLEAUTO. As shown in Ta-

ble 9, FIXEDMANUAL performs better, i.e., smaller latency, than

Table 8 Multiplication latency in FIXEDMANUALmode and FLEXIBLEAUTO

mode w/ OpenFHE

Dataset Level
Latency[sec]

FLEXIBLEAUTO FLEXIBLEAUTO

MNIST
5 0.308 0.795

7 0.404 0.670

Cifar-10
8 0.427 0.729

11 0.566 0.575

Table 9 Activation function latency in FIXEDMANUAL mode and

FLEXIBLEAUTO mode w/ OpenFHE

Activation function #threads
Latency[sec]

FIXEDMANUAL FLEXIBLEAUTO

Square

1 23.07 132.28

18 4.28 10.26

36 6.55 8.86

72 9.38 9.66

swish-rg5-deg2

1 22.91 134.36

18 4.10 10.18

36 6.63 7.80

72 8.81 9.22

swish-rg7-deg4

1 29.40 116.75

18 5.40 9.98

36 8.17 9.04

72 13.77 13.75

FLEXIBLEAUTO in this case. The reason is that FLEXIBLEAUTO is

designed so that OpenFHE automatically applies rescaling just be-

fore homomorphic multiplication, except for the first homomorphic

multiplication. Specifically, we measured the multiplication latency

in FIXEDMANUAL and FLEXIBLEAUTO mode with OpenFHE

by executing a multiplication 5 times to have Table 8. As shown in

Table 8, FLEXIBLEAUTO consumes more time to apply automatic

rescaling than FIXEDMANUAL.

5. 2 Comparison of the Accuracy
As shown in Table 6, in the inferences of 1,000 images, OpenFHE

shows the same accuracy as Microsoft SEAL w/ the MNIST dataset,

Table 10 Accuracy w/ Microsoft SEAL, FIXEDMANUAL mode and

FLEXIBLEAUTO mode

Activation

function

Accuracy

Microsoft

SEAL

OpenFHE

FIXEDMANUAL

OpenFHE

FLEXIBLEAUTO

square 78% 77% 78%

swish-rg5-deg2 81% 78% 81%

swish-rg7-deg4 83% 83% 83%

and lower accuracy in the CIFAR-10 dataset except for the swish-

rg7-deg4. Although we used the same computational process in

SEAL and OpenFHE, the FIXEDMANUALmode in OpenFHE will in-

cur an additional precision loss of around 3-4 bits. Besides, Table 10

compares the accuracy between Microsoft SEAL and FIXEDMANUAL

mode and FLEXIBLEAUTOmode in OpenFHE in 100 inferences. As

shown in Table 10, OpenFHE’s FLEXIBLEAUTOmode achieves the

same precisions as SEAL. This fact implies the existence of another

reason that our setting in FIXEDMANUAL mode is not the best solu-

tion in OpenFHE, even if the setting is the same as Microsoft SEAL.

6 Conclusion

This paper focused on the differences between two homomorphic

encryption libraries, Microsoft SEAL and OpenFHE, to reveal the

essential concepts and implementations to improve the performance

of homomorphic encryption CNN inference. In our experimental

results, Microsoft SEAL performs better than OpenFHE in terms

of latency because Microsoft SEAL has built-in memory manage-

ment. OpenFHE shows the same accuracy as Microsoft SEAL in

the MNIST dataset and lower accuracy in the Cifar-10 dataset ex-

cept for the swish-rg7-deg4.

OpenFHE is capable of automatically scaling numbers and sup-

porting direct calculations with integers. Using SEAL is the best

choice for programs customized by FHE experts or compilers for

specific applications. For beginners of FHE or people who want

to use FHE without sufficient knowledge, OpenFHE is a better ap-

proach even though it incurs 10x longer latency than SEAL.

One of the prospects is to apply memory management in

OpenFHE and evaluate its performance of the homomorphic en-

crypted CNN inference. More importantly, we also need to evaluate

the performance of OpenFHE and Microsoft SEAL using different

CNN models or other applications.

References
[1] C Gentry. A fully homomorphic encryption scheme. phd thesis, stan-

ford university, 2009. 2009.
[2] Microsoft SEAL (release 4.0). https://github.com/Microsoft/

SEAL, March 2022. Microsoft Research, Redmond, WA.
[3] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce

Cousins, Saroja Erabelli, Nicholas Genise, Shai Halevi, Hamish
Hunt, Andrey Kim, Yongwoo Lee, et al. Openfhe: Open-source
fully homomorphic encryption library. In Proceedings of the 10th
Workshop on Encrypted Computing & Applied Homomorphic Cryp-
tography, pages pp.53–63, 2022.

[4] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully ho-
momorphic encryption. IACR Cryptol. ePrint Arch. 2012:144, 2012.

[5] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled)
fully homomorphic encryption without bootstrapping. ACM Trans-
actions on Computation Theory (TOCT), 6(3):pp.1–36, 2014.

[6] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song.
Homomorphic encryption for arithmetic of approximate numbers.
In Proceedings of the Advances in Cryptology – ASIACRYPT
2017,LNCS,vol.10624,pp.409–437. Springer, 2017.

[7] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and
Yongsoo Song. Bootstrapping for approximate homomorphic en-
cryption. In Proceedings of the Advances in Cryptology – EURO-
CRYPT 2018, LNCS, vol. 10820, pp. 360–384. Springer, 2018.

[8] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and
Yongsoo Song. A full rns variant of approximate homomorphic en-
cryption. In Proceedings of the Selected Areas in Cryptography –
SAC 2018, LNCS, vol.11349, pp. 347–368. Springer, 2019.

[9] Nigel P Smart and Frederik Vercauteren. Fully homomorphic simd
operations. Designs, codes and cryptography, 71(1):pp.57–81, 2014.

[10] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim
Laine, and Madan Musuvathi. Eva: An encrypted vector arithmetic
language and compiler for efficient homomorphic computation. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages pp.546–561, 2020.

[11] Openfhe brings new encryption tools to developers. https://
www.darkreading.com/dr-tech/openfhe-brings-new-encryption-tools-
to-developers, 2022.

[12] Thi Van Thao Doan, Mohamed-Lamine Messai, Gérald Gavin, and
Jérôme Darmon. A survey on implementations of homomorphic en-
cryption schemes, 2022. Preprint, doi: 10.21203/rs.3.rs-2018739/v2.

[13] Fabian Boemer, Yixing Lao, Rosario Cammarota, and Casimir
Wierzynski. Ngraph-he: a graph compiler for deep learning on ho-
momorphically encrypted data. In Proceedings of the 16th ACM
International Conference on Computing Frontiers, pages pp.3–13,
2019.

[14] Fabian Boemer, Anamaria Costache, Rosario Cammarota, and
Casimir Wierzynski. Ngraph-he2: A high-throughput framework for
neural network inference on encrypted data. In Proceedings of the 7th
ACM Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, pages pp.45–56, 2019.

[15] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin
Lauter, Saeed Maleki, Madanlal Musuvathi, and Todd Mytkowicz.
Chet: an optimizing compiler for fully-homomorphic neural-network
inferencing. In Proceedings of the 40th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pages
pp.142–156, 2019.

[16] Takumi Ishiyama, Takuya Suzuki, and Hayato Yamana. Highly accu-
rate cnn inference using approximate activation functions over homo-
morphic encryption. In Proceedings of the 2020 IEEE International
Conference on Big Data (Big Data), pages pp.3989–3995. IEEE,
2020.

[17] 石山琢己, 鈴木拓也, and 山名早人. 準同型暗号上での畳み込み
ニューラルネットワーク推論に対する channel pruning の適用.
In第 14 回データ工学と情報マネジメントに関するフォーラム
(DEIM2022), number J33-4, pages pp.1–8, 2022.

[18] Takumi Ishiyama, Takuya Suzuki, and Hayato Yamana. Latency-
aware inference on convolutional neural network over homomorphic
encryption. In Proceedings of the 24th International Conference on
Information Integration and Web Intelligence (iiWAS 2022), LNCS,
vol.13635, pp.324–337.

[19] Yann Lecun, Leon. Bottou, Yoshua. Bengio, and Patrick. Haffner.
Gradient-based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):pp.2278–2324, 1998.

[20] Alex Krizhevsky. Learning multiple layers of features from tiny im-
ages, 2009. https://www.cs.toronto.edu/˜kriz/learning-
features-2009-TR.pdf.

